
Tandy 1000EX

Technical Reference Manual

TANDY®

TANDY 1000 EX TECHNICAL REFERENCE MANUAL

Tandy 1000 EX Technical Reference Manual Copyright 1986, Tandy Corporation. All rights reserved.

Reproduction or use without the express written permission from Tandy Corporation, of any portion of this manual is prohibited. While reasonable efforts have been taken in the preparation of this manual to assure its accuracy, Tandy Corporation assumes no liability resulting from any errors or omissions in this manual, or from the use of the information obtained herein.

TARIDY	COMPI	ITED	PPODLICTS	

TANDY 1000 EX CONTENTS

MAIN LOGIC BOARD
POWER SUPPLIES
KEYBOARD
MEMORY PLUS
RS-232 INTERFACE BOARD
MOUSE CONTROLLER/CALENDAR
PLUS NETWORK 4 INTERFACE
DEVICES

Note: Complete information for the Disk Drives for this unit is available through your local store. They will order the desired Service Manual from Radio Shack National Parts, Fort Worth, Texas.

Foldout Page Insertion Guide

To Be Inserted <u>after Page 16</u> of the Main Logic Section

Light Blue To System

Timing Diagram

Sheets 1 of 2 and 2 of 2

Big Blue to System Timing Diagram

Sheets 1 of 2 and 2 of 2

To Be Inserted at the end of the Main Logic Section

Main Logic Schematic

8000273

Sheets 1 of 9 thru 9 of 9

PCB Art (Silkscreen, Component and Solder Sides)

1700338 Rev. A

To Be Inserted at the end of the 28 Watt Single Input Power Supply

Schematic

8790083 3P-M1-0163

To Be Inserted at the end of the 28 Watt Dual Input Power Supply

Schematic

8790086 3P-M1-0159

To Be Inserted at the end of Keyboard Section

Keyboard Circuit

B-8080079

and Layout

Sheets 5 and 6 of 7

To Be Inserted <u>after Page 1 of the Memory Plus Expansion Adapter Section</u>

Tan to System Timing

Sheet 1 of 1

To Be Inserted at the end of the Memory Plus Expansion Adapter Section

Schematic

D = 8000275Sheet 1 of 1

To Be Inserted just before WD 8250 Asynchronous Communication Element Specification of RS-232 Section

Schematic of RS-232

8000253 (Rev. D) Sheet 1 of 1

Combo

(Dated 5/22/85)

Schematic of RS-232

8000253 (Rev. D)

Combo

Sheet 1 of 1 (Dated 5/20/86)

To Be Inserted after Page 22 of the Mouse Controller/Calendar Section

Schematic

8000254

Sheet 1 of 1

To Be Inserted at the end of the PLUS Network 4 Interface Section

Schematic

D-8000279

Sheets 1, 2 and 3 of 3

MAIN LOGIC BOARD

MAIN LOGIC BOARD CONTENTS

INTRODUCTION	. 1
SPECIFICATIONS	. 3
SYSTEM TIMING	17
THEORY OF OPERATION	21
I/O MAP SUMMARY	45
PARTS LIST	63
SCHEMATICS	
PCB ART	

INTRODUCTION TO THE TANDY 1000 EX COMPUTER

The Tandy 1000 EX Computer is modular in design to allow maximum flexibility in system configuration. The computer consists of a Main Unit, and a monitor. The Main Unit is supplied with one internal floppy disk drive. A second external floppy disk drive is optional. Each disk drive has a capacity of 360K bytes formatted. The standard types of monitors used with the Tandy 1000 EX are the monochrome composite and the color RGB monitor. Since these units are modular, they may be placed on top of the Main Unit or at any convenient location.

The Tandy 1000 EX has a standard 256K of system RAM. An optional DMA/RAM board allows the Tandy 1000 EX to be expanded by 128K or 384K of RAM. This board will fit onto the expansion slot. With a fully populated RAM board installed, the Tandy 1000 EX will have 640K bytes of RAM allowed by the system memory map.

Other features include a parallel printer port, two built-in joystick interfaces, and a speaker for audio feedback.

The Main Unit is the heart of the Tandy 1000 EX. It houses the Main Logic Assembly, system power supply, floppy disk drive, and keyboard.

The Main Logic Assembly is a large board mounted to the bottom of the Main Unit and interconnected to the keyboard, power supply, and disk drive by a series of cables. Figure 1 shows the Tandy 1000 EX.

The Power Supply is a 28W switching regulator type, designed to provide adequate power capacity for a fully configured system.

The Floppy Disk Drive uses double-sided, double-density diskettes to read, write, or store data. These are soft sector diskettes. The Disk Drive assembly is installed in the standard unit. All system programs, with the exception of the system startup sequence, are stored on disk.

Either a monochrome or a color display may be used with the Tandy 1000 EX. The monochrome monitor is a high-resolution green phosphor display which provides excellent visual quality. It features a 12" screen with an anti-glare surface. Each display is capable of 25 lines of 80 characters. The character matrix is 8 wide x 9 high.

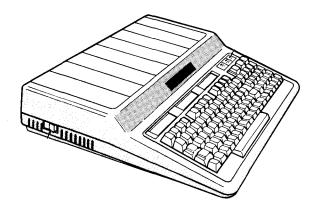


Figure 1. TANDY 1000 EX

SPECIFICATIONS

Processor: Intel 8088

Dimensions: $3 1/4 \times 17 \times 14 1/2 \text{ (HWD)}$

Weight: ll lbs

Power Requirements: 120 VAC, 60 Hz

With Floppy Disk Drives, Memory Cards, and RS-232:

AC Current: 0.7 - 0.8 Amps with Floppy doing R/W tests.

Leakage Current: 0.5 mA

+5 VDC 3.0 Amps max., 1.9 Amps Typ.

+12 VDC 2.0 Amps max. 1.2 Amps continuous

-12 VDC .1 Amp max.

Environment:

Air Temperature

System ON: 60 to 90 degrees F (15.6 to 32.2

degrees C) System OFF: 50 to 110 degrees F (10 to 43

degrees C) Humidity: System ON-OFF: 8% to 80%

Disk Drive Specifications

Power:

Supply

Voltage +5 VDC Input +12 VDC Input

Ripple

0 to 50 kHz 100 mV 200 mV

Tolerance

Including Ripple +/-5% Standby Current +/-10%

0.2 mA Nominal 4 mA

0.5 mA Worst Case 6.8 mA

Operating Current

170 mA 120 mA Nominal Worst Case 120 mA 230 mA

Environment:

Temperature

Operating 40 to 125 degrees F (4 to 51.5 C) Nonoperating -40 to 149 degrees F (-40 to 65C)

Relative Humidity

Operating 20% to 80% (noncondensing)

Nonoperating 10% to 90% (noncondensing)

Connector Pin Assignments

Jl	Speaker Interface (2-Pin Vertical Header)	
	1 Sound	2 Ground
J2	PWR, NUM, CAP	
	<pre>1 Power Indicator 3 Num Indicator 5 CAPS Indicator</pre>	2 Gnd 4 NUMLOCK Control 6 CAPS Control
J3	Keyboard Interface	
	1 x1 2 x5 3 x4 4 x3 5 x2 6 x6	7 x0 8 x7 9 x3 10 x1 11 x5 12 x4
J5 	Fan	
	1 +12V	2 GND
J6	DC POWER (6-Pin Vertical Header)	
	1 +5 VDC 3 GND 5 +12V	2 +5 VDC 4 Ground 612V
J7	Keyboard Interface	
	1 Y0 2 Y1 3 Y11 4 Y2 5 Y3 6 Y4 7 Y5	8 Y6 9 Y7 10 Y8 11 Y9 12 Y10 13 Y11
J8	Audio Jack	
	1 GND	2 AUDIOOUT

```
Right Joystick
J9 --
            (6-Pin Rt. Angle Circular Din)
            1 -- Y Axis
                                                2 -- X Axis
            3 -- Ground
5 -- +5 VDC
                                                4 -- Switch l
                                                6 -- Switch 2
           Left Joystick
            (6-Pin Rt. Angle Circular Din)
            1 -- Y Axis
                                                2 -- X Axis
            3 -- Ground
                                                4 -- Switch 1
            5 -- +5 VDC
                                                6 -- Switch 2
Jll --
          Floppy Disk Interface Internal
            (Dual 17-Pin Vertical Header)
                                                 2 -- NC
             1 -- Ground
             3 -- Ground
                                                 4 -- NC
             5 -- Ground
                                                 6 -- NC
             7 -- Ground
                                                8 -- INDEX*
             9 -- Ground
                                                10 -- DSINT*
           11 -- Ground
11 -- Ground
13 -- Ground
15 -- Ground
17 -- Ground
19 -- Ground
21 -- Ground
23 -- Ground
25 -- Ground
                                                12 -- NC
                                                14 -- NC
                                                16 -- MTRON*
                                                18 -- DIR*
                                                20 -- STEP*
                                               22 -- WRDATA*
                                                24 -- WEN*
                                                26 -- TRK0*
            27 -- Ground
                                               28 -- WRPRT*
                                               30 -- RDDATA*
            29 -- Ground
            31 -- Ground
                                               32 -- SIDESELECT*
                                               34 -- NC
            33 -- Ground
```

J12 -- Expansion Interface Connectors (Dual 31-Pin Header)

A01	 NMI	B01	 Ground
A02	 D7	B02	 RESET
A03	 D6	B03	 +5 VDC
A04	 D5	B04	 IR2
A05	 D4	B05	 NC
A06	 D3	B06	 FDCDMRQ*
A07	 D2	B07	 -12 VDC
80A	 Dl	B08	 AUDIOIN
A09	 D0	B09	 +12 VDC
A10	 RDYIN	B10	 Ground
All	 AEN	Bll	 MEMW*
A12	 A19	B12	 MEMR*
A13	 A18	B13	 IOW*
Al4	 A17	B14	 IOR*
A15	 Al6	B15	 (DACK3*)
Al6	 A15	B16	 (DRQ3*)
Al7	 Al4	B17	 (DACK1*)
A18	 A13	B18	 (DRQl*)
Al9	 A12	B19	 REFRESH*
A20	 All	B20	 CLK
A21	 A10	B21	 RFSH
A22	 A09	B22	 BREQ*
A23	 A08	B23	 NC
A24	 A07	B24	 IR4
A25	 A06	B25	 IR3
A26	 A05	B26	
A27	 A04	B27	 DMATC
A28	 A03	B28	 ALE
A29	 A02	B29	 +5 VDC
A30	 A01	B30	 osc
A31	 A00	B31	 Ground

```
J13 --
          Parallel Interface
          (34-Pin Header)
                                        2 -- Ground
           1 -- PPSTROBE*
                                        4 -- Ground
           3 -- PPDATA0
                                        6 -- Ground
           5 -- PPDATA1
           7 -- PPDATA2
                                        8 -- Ground
                                       10 -- Ground
           9 -- PPDATA3
          11 -- PPDATA4
                                       12 -- Ground
          13 -- PPDATA5
                                       14 -- NC
          15 -- PPDATA6
17 -- PPDATA7
                                       16 -- Ground
                                       18 -- Ground
                                       20 -- Ground
          19 -- PPACK*
          21 -- PPBUSY
                                       22 -- Ground
                                       24 -- Ground
          23 -- PPPAEM
          25 -- PPSEL*
                                       26 -- NC
          27 -- PPAUTOF*
                                       28 -- PPFAULT
          29 -- NC
                                       30 -- PPINIT*
          31 -- Ground
                                       32 -- NC
                                        34 -- NC
          33 -- Ground
J14 --
         Floppy Disk Interface External
          1 -- +127
                                         2 -- +5V
           3 -- +12V
                                         4 -- +5V
           5 -- GND
                                         6 -- +5V
           7 -- GND
                                        8 -- +57
                                       10 -- INDEX*
           9 -- GND
          11 -- GND
                                       12 -- TKO*
                                      14 -- STEP*
16 -- MTRON*
          13 -- GND
          15 -- SIDESELECT*
17 -- DIR*
                                       18 -- GND
          19 -- WRPRT*
                                       20 -- GND
                                       22 -- GND
          21 -- RDDATA*
          23 -- WRDATA*
                                       24 -- GND
          25 -- WEN*
                                       26 -- GND
          27 -- NC
                                        28 -- +12V
          29 -- DSEXT*
                                        30 -- +12V
J15 --
          Composite Output
          (Rt. Angle RCA-Type Phone Jack)
          1 -- Compvid
                                        2 -- Ground
J16 --
          RGBI Video
          (9-Pin Socket Rt. Angle D-Subminiature)
          1 -- Ground
                                           2 -- Ground
          3 -- Red
                                           4 -- Green
          5 -- Blue
                                           6 -- Intensity
          7 -- Green (Monochrome Video) 8 -- HSYNC
          9 -- VSYNC
```

							I
			LTR	DESCRIPTION	TION	DATE	APPD
		SPECIFICATION - OPTION CARD	TION CARD				
		REFERENCE DRAWINGS B1720019 D1720020 C1720011	INGS				
							-
		MAT'L		S. LONG	P/13/8812		
					DATE		
				DESIGN		SPECIFICATION	
		FINISH	6			OPTION CARD	
SPECIFIED)				QddV	DATE		
DIM, ARE IN INCHES AND APPLY AFTER PLATING	XX - 1 010 XXX - 1 005			TANDY	>	8-₹	183
DO NOT SCALE DWG, AN	WGLES-17P		USED ON			SCALE SHEET	, o

Option Card Description

PINOUT: IBM Bus Signal	Proj 620 Signal	PIN	PIN	Proj 620 SIGNAL	IBM Bus	
519Hai				SIGNAL	Signal	
GND	GND	B01	A01	NMI	I/OCHCK*	
RESETDRV	BRESET	B02	A02	D 7	D7	
+5V	+5V	B03	A03	D6	D6	
IRQ2	IR2	B04	A04	D5	D5	
-5VDC	NC	B05	A05	D4	D4	
	FDCDMARQ0*		A06	D3	D3	
-12V	-12V	B07	A07		D2	
	AUDIOIN	B08	80A	Dl	D1	
+12V	+12V	B09	A09	D0	D0	
GND MEMW*	GND MEMW*	B10	A10	READY	I/OCHRDY	
MEMR*	MEMR*	B11	All Al2	AEN A19	AEN Al9	
IOW*	TOW*	B13		Al8	A19 A18	
IOR*	TOR*	B13 B14	Al4	Al7	Al7	
DACK3*	DACK3*		A15	Al6	A16	
DRQ3	DRQ3*	B16	A16	A15	A15	
DACK1*	DACK1*	D17	A17	Al4	A14	
DRQ1			A18	A13	A13	
DACKO*	DRQ1* REFRESH*	B19	A19	A12	A12	
CLOCK	CLK	B20	A20	All	All	
IRQ7	CLK RFSH* BREQ*	B21	A21	A10	A10	
IRQ6	BREQ*	B22	A22	A09	A09	
IRQ5		B23	A23	A08	A08	
IRQ4	IR4	B24	A24	A07	A07	
IRQ3	IR3	B25	A25	A06	A06	
DACK2*	FDCDMACK*	B26	A26	A05	A05	
T/C	TC	B2/	A2/	AU4	A04 A03	
ALE +5V	ALE +5V	D20	A20	AU3	A03	
OSC	osc	B30	A20	A02 A01	A01	
GND	GND	B31	A31	AOO	A00	
GIID	QIII D	231	A24 A25 A26 A27 A28 A29 A30 A31	1100	1100	
osc	0	030111	accr.	14.31818 Mb uty cycle	nz High-speed	clock
CLK	0	System duty cycle.	clock ycle o	: It can be r 7.16 Mhz	e 4.77 Mhz wit with a 50% du	h a 33% ty
BRESET	0	or iniduring	tialize a lowi is syn	e system lo line voltag	ine is used to ogic upon powe ge outage. Thi to the fallin high.	r-up or
A0-A19	0	to add:	ress me	emory and I	These lines ar I/O devices wi ess lines allo	thin

		access of upto 1 megabyte of memory. A0 is the least significant (LSB) and A19 is the most significant (MSB). These lines are generated by either the processor or DMA controller. They are active high.
D0-D7	1/0	Data Bits 0 to 7: These lines provide data bus bits 0 to 7 for the processor, memory, and I/O devices. D0 is the least significant bit (LSB) and D7 is the most significant bit (MSB). These lines are active high.
ALE	0	Address Latch Enable: This line is provided by the Bus Controller and is used on the system board to latch valid addresses from the processor. It is available to the I/O channel as an indicator of a valid processor address (when used with AEN). Processor addresses are latched with the falling edge of ALE.
NMI	I	-Nonmaskable Interrupt: This line provides the processor with parity (error) information on memory or devices in the I/O channel. When this signal is active low, a parity error is indicated.
RDYIN	I	Ready In: This line, normally high (ready), is pulled low (not ready) by a memory or I/O device to lengthen I/O or memory cycles. It allows slower devices to attach to the I/O channel with a minimum of difficulty. Any slow device using this line should drive it low immediately upon detecting a valid address and a read or write command. This line should never be held low longer than 10 clock cycles. Machine cycles (I/O or memory) are extended by an integral number of CLK cycles (210ns).
IR2-IR4 BREQ, RFSH*	I	Interrupt Request: These lines are used to signal the processor that an I/O device requires attention. They are prioritized with IRQ2 as the highest priority and RFSH* as the lowest. An Interrupt Request is generated by raising an IRQ line (low to high) and holding it high until it is acknowledged by the processor (interrupt service routine).
IOR*	0	-I/O Read command: This command line instructs an I/O device to drive its data

		onto the data bus. It may be driven by the processor or the DMA controller. This signal is active low.
IOW*	0	-I/O Write command: This command line instructs an I/O device to read the data on the data bus. It may be driven by the processor or the DMA controller. This signal is active low.
MEMR*	0	Memory Read command: This command line instructs the memory to drive its data onto the data bus. It may be driven by the processor or the DMA controller. This signal is active low.
memw*	0	Memory Write command: This command line instructs the memory to store the data present on the data bus. It may be driven by the processor or the DMA controller. This signal is active low.
FDCDMRQ*	I	FDC DMA Request: This line is an asynchronous channel request used by a floppy disk to gain DMA service. A request is generated by bringing the line to an active level (high). The line must be held high until the FDCDACK* line goes active.
REFRESH* FDCDACK*	0	-DMA Acknowledge: These lines are used to acknowledge FDC DMA requests and to refresh system dynamic memory. They are active low.
AEN	0	Address Enable: This line is used to de-gate the processor and other devices from the I/O channel to allow DMA transfers to take place. When this line is active (high), the DMA controller has control of the address bus, data bus, read commnad lines (memory and I/O), and the write command lines (memory and I/O).
DMATC	0	Terminal Count: This line provides a pulse when the terminal count for any DMA channel is reached. This signal is active high.
AUDIOIN	I	Audio In: This line allows a peripheral device to generate sound using the internal speaker.
Voltages: +5Vdc+/-5%,	1. 4 A,	located on 2 connector pins (.45A per option board).

+12Vdc+/-5%, 0.1A, located on 1 connector pin (0.03A per option board).
-12Vdc+/-10%, 0.1A, located on 1 connector pin (0.03A per option board).
GND (Ground), located on 3 connector pins

BUS INTERFACE SPECIFICATIONS

This specification is for the primary bus on the Tandy 1000 EX main logic board, which also is available to the option board connectors. The specification describes the signals in the following manner. See Figures 2 and 3.

- o The following signal nomenclature is used in the schematic and literature. Signals designated with the suffix "*" are logically "true low" (normal inactive state is high); if they are not so designated, the signal is logically "true high."
- o Direction -- input or output -- is referenced to the CPU.
- o Brief functional description of the signal.
- o Description of the "drive" or "load" characteristics of the signal. This includes the specific source by IC type and reference designator, drive capability for "output" signals, and actual load for "input" signals. The drive/load is defined in "unit loads" and specified as "high/low." This specification is for the main logic board only. Some signals have an alternate source, an external bus master such as the DMA.
- o l Unit Load (UL) is defined as: Ioh = .04mA @ 2.4V Iol = 1.6mA @ 0.5V

Signal Listing

A00 - A19	0	ADDRESS	SOURCE: U18,U19,U20 Drive - 65/15 UL Latch Strobe - ALE Output Enable - AEN Alternate external source
D0-D7	I/0	DATA	SOURCE: Ul3 Drive - 37/15 UL Direction Control - RD* (CPU read signal) Enable - DEN*
ALE IOW* IOR* MEMW*	0 0 0	ADDRESS LATCH STROBE I/O WRITE STROBE I/O READ STROBE MEMORY WRITE STROBE	SOURCE: Ul2 Drive - 50/7.5 UL Output Enable - AEN Pull-Up - 4.7K ohms

MEMR*	0	MEMORY READ STROBE	Alternate external source
CLK	0	CPU CLOCK	7.16MHz, 50% duty cycle or 4.77MHz, 33% duty cycle SOURCE: U18 Drive - 75/7.5 UL
osc	0	OSCILLATOR	14.32MHz, 50% duty cycle SOURCE: U18 Drive - 75/7.5 UL
NMI	I	NON-MASKABLE INTERRUPT	To System NMI Load: 1/1 UL, U3
RDYIN	I	SYSTEM WAIT	SOURCE: OPEN-COLLECTOR OR 3-STATE BUFFERS Load: 1 UL and 1.0K ohm pull-up. 10/0.9 UL Set LOW by Peripherals (I/O or Memory) to extend READ or WRITE cycles.
RESET	0	SYSTEM RESET	Power On or Manual SOURCE: U18 Drive: 75/7.5 UL
BREQ*	I	BUS REQUEST	From external masters Load: 1 UL and 10K ohm pull-up. 10/0.9 UL
AEN	0	BUS GRANT	To external masters SOURCE: U18 Drive - 75/7.5 UL
IR2	I	INTERRUPT REQUEST#2	To system interrupt controller
IR3	I	INTERRUPT REQUEST#3	Load: 1 UL and 2.2K pull-down
IR4	I	INTERRUPT REQUEST#4	pail-down
AUDIO IN	I		Not Used.
AUDIO OUT	0		To External Source Drive: 1.25 Volts P-P into 10K

The following are not sourced by the CPU but are to be SOURCED (O) Output or Loaded (I) Input by an external DMA source:

RFSH	I	REQUEST DMA CHANNEL#0	Dedicated input requests to DMA
DRQ1	I	REQUEST DMA CHANNEL#1	
FDCDMRQ	I	REQUEST DMA CHANNEL#2	1 MOS load 40/160 UL
DRQ3	I	REQUEST DMA CHANNEL#3	
REFRESH*	0	ACKNOWLEDGE DRQ0*	Dedicated output
DACK1*	0	ACKNOWLEDGE DRQ1*	acknowledges from DMA.
FDCDACK*	0	ACKNOWLEDGE DRQ2*	
DACK 3*	0	ACKNOWLEDGE DRQ3*	
DMATC	0	TERMINAL COUNT	Used by DMA Controller to indicate Terminal Count reached. Drive: 2/2 UL

GROUND Power Return for +5, +12, -12 VDC.

⁺⁵VDC +5VDC 4% 1.0 Amps available on the bus. +12VDC +12VDC 5% .3 Amps available on the bus. -12VDC -12VDC +8.3% - 25% 0.06 Amps available on the bus.

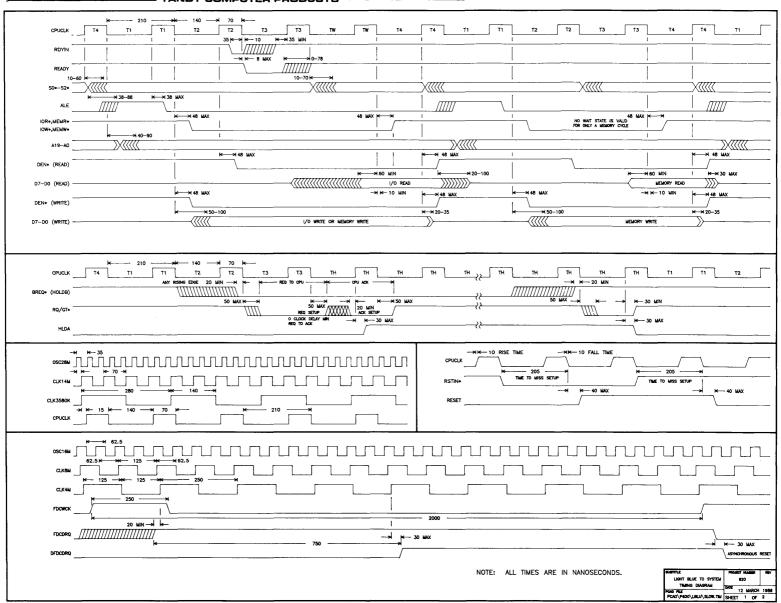


Figure 2. Light Blue to System Timing (1 of 2)

Figure 2 (Cont.) Light Blue to System Timing (2 of 2)

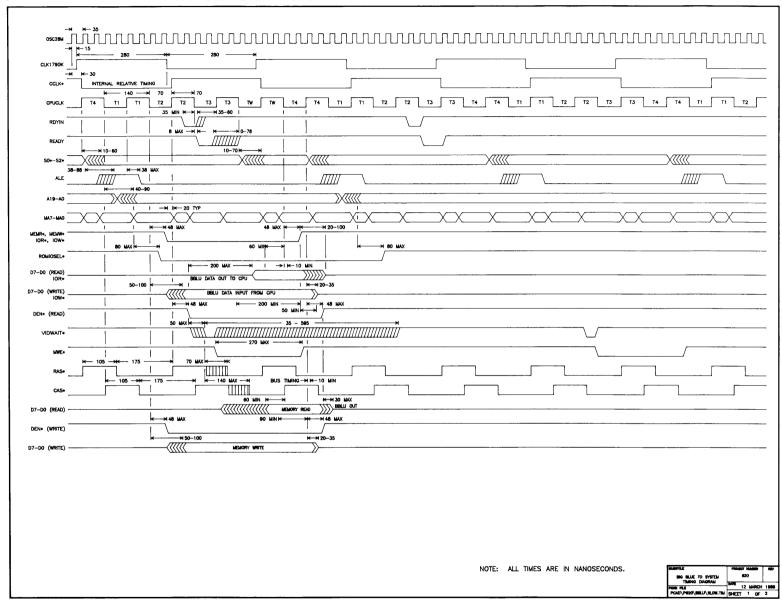


Figure 3. Big Blue to System Timing (1 of 2)

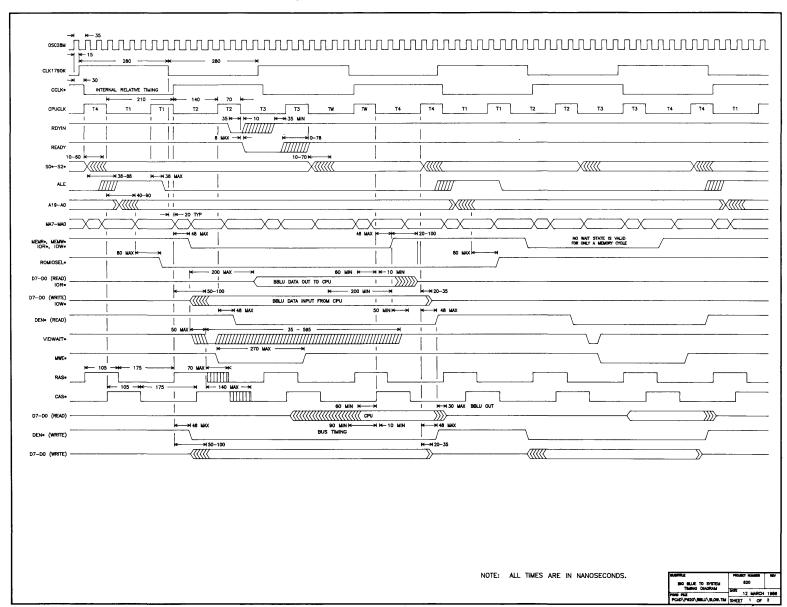


Figure 3 (Cont.) Big Blue to System Timing (2 of 2)

THEORY OF OPERATION

Main Logic Board

The Block Diagram of the main logic board (Figure 4) shows the basic functional divisions.

CPU Function

The CPU function consists of the CPU (Intel 8088), the address, data interface, the CPU control signal generator, the bus control signal generator and the interrupt controller (Intel 8259A). It is located near the DC Power connector.

Non-CPU Function, Main Logic Board

The non-CPU functions can be divided into two main parts: memory and I/O. Memory consists of RAM and ROM. RAM or Video/System Memory (Figure 5) serves as storage for both the video data and program data. ROM memory contains the BIOS and diagnostics. I/O consists of all the peripheral functions; keyboard, floppy disk controller, printer, joystick and sound.

Processor Address/Data Interface

The 8088 has three groups of Address/Data lines; ADO - AD7, A8 - A15 and A16 - A19. AD0 - AD7 are multiplexed address and data lines. To separate and save the address that comes out first, the signals are applied to U20 (74HCT373) and latched by ALE. Additionally, the signals are applied to data transceiver U13 (74HCT245). U13 is enabled only during the data portion of the CPU cycle. (The exception is during an Interrupt Acknowledge cycle.) Direction of transmission is controlled by the RD* (READ) signal from the Timing Control Generator. Address lines A8 - A15 are present during the entire CPU cycle and need only to be buffered. Address lines Al6 - Al9 are multiplexed with status signals S4 - S7 and need to be latched. The results are: A8 - All, Al6 - Al9 are latched into Ul9 (74HCT373) by ALE and Al2 -Al5 are buffered by half of Ul8 (74HCT244). The outputs from these latches/buffers/transceivers are the BUS Signals A00 - A19, D0 - D7.

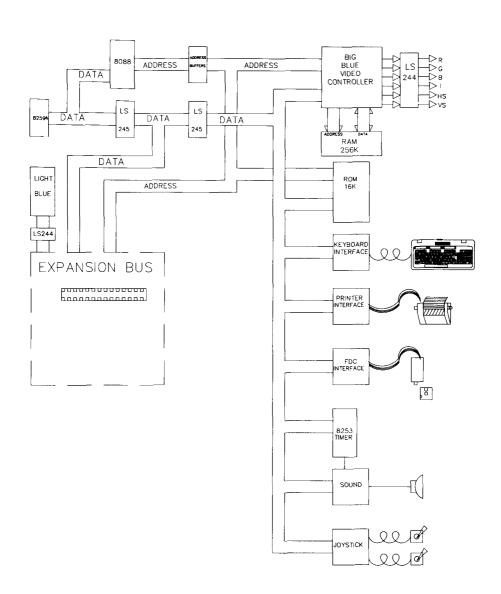


Figure 4. Main Logic Block Diagram

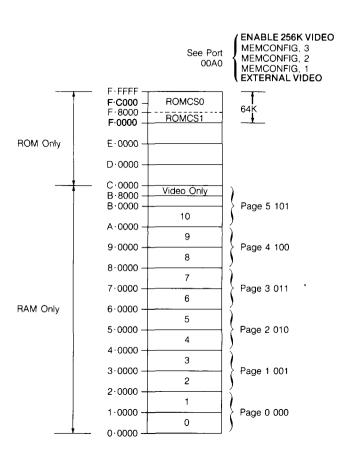


Figure 5. Memory Map

CPU Control Signal Generation

The 8088 CPU uses a 4.77 (7.16) MHz clock with a special duty cycle (33% (4.77) high, 67% low) (7.16 -> 50% High 50% Low). This clock is produced by the Timing Control Generator. The Timing Control Generator receives a 28 MHz input clock and divides it by 6 to produce 4.77 MHz CPUCLK or by 4 to produce 7.16 MHz CPUCLK and by 24 to produce D4CLK (1.193 MHz). In addition to being used by the control signal logic, the clocks are buffered by U18 (74HCT244) for the bus signals OSCY (14 MHz), CLKY (CPU clock) (4.77/7.16 MHz). (See the Bus Interface Specification).

The RESET signals (RESET, BRESET, RST*) originate at Ul6 (Timing Control Generator) which synchronizes the input RES*. RES* originates from Cl30 which is shorted to 0 volts by diode CR2 when the power is off.

The READY circuit synchronizes the system "ready" signals with the CPU clock and generates the CPU input READY. If a function needs one or more "wait" states added to its access, it must set the RDYIN line low. From the main logic board, RDYIN is set low by the sound IC for 32 extra "wait states" and the video/system memory sets RDYIN low for typically one or two "wait" cycles. The READY circuit of the Timing Control Generator (U16) is operated in the non-asynchronous mode; i.e. two sequential edges of clock (a rising edge first) are required to set the READY signal true. RDYIN is pulled-up by R30.

Checksum: 50C9

IFL Equations

II3 Buffer Control

Inputs		Outputs
PIN 1 = !mio	PIN 7 = !fdcack	PIN 14 = iomb
PIN 2 = !memr	PIN 8 = !ior	Pin 15 = enbnmi
PIN 3 = al9	PIN 9 = !refresh	PIN 16 = !romcs
PIN 4 = al8	PIN 11 = nmien	PIN 17 = !bufenb
PIN 5 = al7	PIN 12 = nmi	PIN 18 = bufdir
PIN 6 = !memios	PIN 13 = a16	PIN 19 = !bbrfsh

Equations:

System Control Signal Generation

The Timing Control Generator (U16) provides the timing strobes required by the system. These include IOW*, IOR*, MEMW*, MEMR*, ALE, DEN* and IO/M*. These signals are synthesized 8088 status signals S0*, S1*, S2* and INTCS* (8258A chip select). See Figure 6.

All external devices, except the 8259A Interrupt Controller, are buffered by an LS244 that is controlled by the DEN* signal. Since the 8259A is not buffered, the DEN* signal must remain inactive during accesses to the 8259A.

Bus Specification

Specifications for the bus will include the expansion connector pin/signal assignments and the signal characteristics. Refer to the Expansion I/F Connector diagram. See Figure 7.

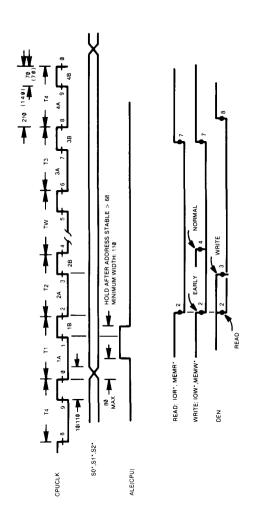
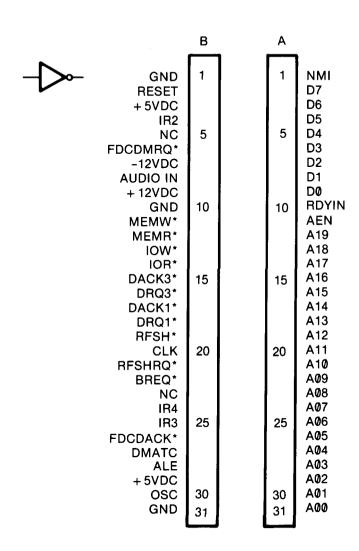
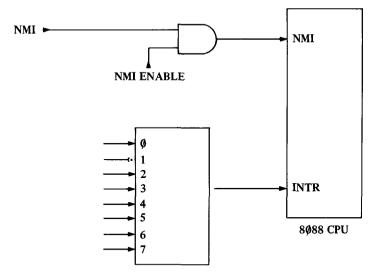


Figure 6. System Control Timing




Figure 7. Expansion I/F Connector

Interrupt Function

The 8088 supports two types of interrupts: maskable (by the CPU, INT) and non-maskable (NMI). See Figure 8. The 8259A Interrupt Controller is the source of the INT for the 8088. The 8259A has eight interrupt inputs controlled through software commands. It can mask (disable) and prioritize (arrange priority) to generate INT. These eight interrupts are:

#0	Timer Channel 0	Software Timer
#1	Keyboard	Keyboard Code Received
#2	Hard Disk Controller	Optional Function, Interrupt on Bus
#3	Comm 2	Optional Function, Interrupt on Bus
#4	Comm 1	Optional Function, Interrupt on Bus
#5	Vertical Sync	Software Timer for Video
#6	Disk Controller, Floppy	Ready to Receive/Transmit Data
#7	Printer	Data Transmission Complete

The NMI interrupt is not maskable by the CPU but it can be enabled/disabled by hardware. The enable is at Port 00A0 Bit 7. The enable is cleared by RESET. There is no specific function assigned to NMI and it is available on the bus.

8259A INTERRUPT CONTROLLER

INTERRUPT	FUNCTION
NMI	AVAILABLE ON BUS
ø	8253 TIMER CH Ø (REFRESH)
1	KEYBOARD
2	HARD DISK
3	SECONDARY COMM.
4	PRIMARY COMM.
5	VERTICAL SYNC.
6	FLOPPY DISK CONTROLLER
7	PARALLEL PORT

Figure 8. Interrupt Structure

Bus Interface

The interface to the main bus is divided into three parts: address/control strobes, memory data and I/O data. The address/control strobe part (BAO - BA19, BMEMR*, BMEMW*, BIOR*, BIOW*) is shared by both the I/O and the memory sections. Input buffers are U18, U20 and U19. One function of the address bus is the select logic for each of the functions. U24 decodes all the I/O chip selects except those for the Video/System Memory I/O ports which are decoded by U28. The memory selects are decoded by U28. The I/O data transceiver is U11 with its output enable and direction control decoded by U3.

Keyboard / Timer / Sound Circuits

Included in the Array is an 8255 programmable peripheral interface equivalent design. It has three 8 bit parallel ports, A, B and C. Port A is configured as an input port and is used for keyboard data. Port B is configured as an output port and is used for control signals for the sound, keyboard and timer functions. Port C is split into 4 inputs, including the timer channel and #2 monitor and 4 outputs including the keyboard/multifunction interface signals.

Keyboard Interface

The Keyboard Interface consists of an 8048 (U6) CPU and a Keyboard (U10) Controller. The 8048 generates strobes to the keyboard. Data from the keyboard is received by the 8048, translated to an 8 bit asynchronous serial format, and transmitted to the Keyboard Controller. The Keyboard Controller translates this serial data into a parallel format and makes it available to the data bus. The serial data from the 8048 consists of a clock signal and a data signal. The clock consists of 8 consecutive positive pulses (signal normal state is logic low). The rising edge of each pulse is centered in the middle of each data period. The data signals consists of 8 data periods and an "end-of-character" bit. Normal state of the data signal is logic high which represents a logic 1. Thus, the data signal will change only if the data bit is a 0. The ninth and last data bit is always a 0. In the absence of a ninth clock, it will set the interrupt and busy signals. See Figure 9 for the Keyboard Timing Chart.

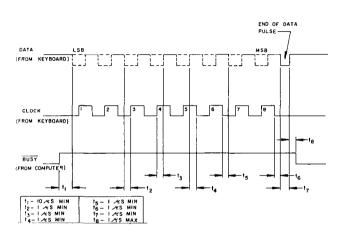
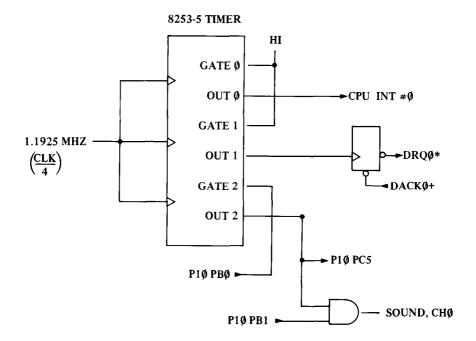


Figure 9. Keyboard Timing Chart

Timer Function


The Timer is an 8253 Timer/Counter consisting of three independent counters. The clock for all three counters is 1.1925 MHz. The gate for counter #0, #1 is permanently "on". The gate for counter #2 is controlled by a bit of the keyboard interface (8255 Port B). The output of counter #0 is dedicated to system interrupt #0 (8259 IRO) for software timing functions. The output of counter #1 is dedicated to the REFRESH function. When the optional DMA/Memory board is installed, DMA channel #0 is used for refreshing the RAM memory. Counter #1 sets RFSHRQ* (DRQ0) every 15 microseconds to initiate a single "dummy" memory read. The output of counter #2 is routed to the sound circuit and into the 8255 Port C for monitoring by the CPU. See Figure 10.

Sound Function

The sound function consists of an internal and an external sound circuit. These are directly connected to the speaker via U4. The source of the sound frequencies is U15 Complex Sound Generator. Internally, U15 has four programmable sound generators. The frequency and output level of each is controlled by software. The four internal generators are summed with an external input into a single output. The external source is from the 8253 counter #2 (programmable frequency and fixed amplitude). It is one of three selectable sources for the external audio out signal. This signal is intended as an input into an external earplug. The two sound frequency sources are:

- 1. Complex sound generator U15.
- 2. The 8253 counter at channel 2.

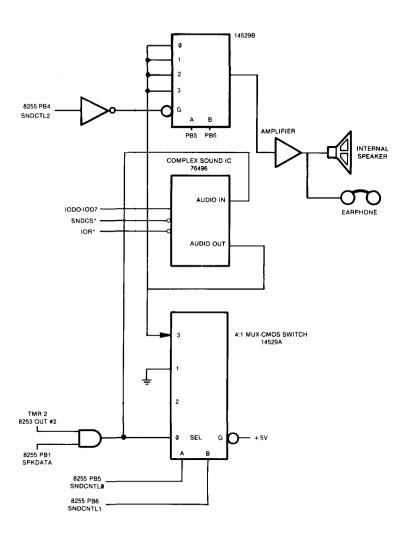
These are selected by an analog multiplexer Ul. Selection signals are SNDCNTLO, SNDCNTL1 from the keyboard interface. The output driver for Audio Out is U4 which is designed to drive a load impedance of 1000 ohms. See Figure 11.

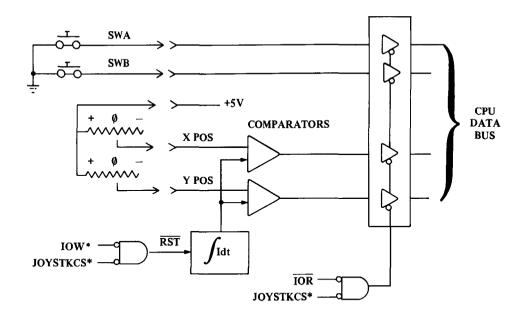
CHANNEL Ø: MODE Ø, INTERRUPT ON T/C

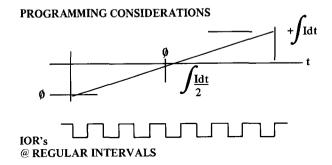
1: MODE Ø, NEGATIVE PULSE ON T/C

2: MODE 3, SQUARE WAVE OUTPUT

Figure 10. System Timer 8253-5




Figure 11. Sound Functional Block Diagram


Joystick Interface

The joystick interface converts positional information from hand-held joysticks (1 or 2) into CPU data. Each joystick provides 1 or 2 push-buttons and X, Y position for a total of 4 bits each. You can use 2 joysticks. The joystick handle is connected to two potentiometers mounted perpendicular to each other; one for X position, one for Y position. Through the cable, the main logic board applies +5 VDC to one side and ground to the other of the pots. The pot wiper is the position signal: a voltage between 0 and +5 VDC. This signal is applied to one input of a comparator U21. The other comparator input is the reference signal (a ramp between 0.0 to +5.0 volts.) When the position signal is equal or less than the reference signal, the comparator output goes true. This comparator output is the X or Y position data bit. The ramp is reset to 0.0 VDC whenever a "write" is made at Port 200/201 Hex. The IOW* signal turns on Q2, which drains Cl27 to 0.0 volts. When Q2 is turned off, Q1, R22, R27, R39, and CR3 create a constant-current source that linearly charges C127 to +5.0 VDC in 1.12 milliseconds. The joystick information is "read" by the CPU at Port 200/201 Hex through U23. See Figure 12.

Printer Interface

The printer interface is totally contained in a custom Gate Array U32 and is shown in Figure 13. Functionally, the printer interface consists of an output data latch (write @ 378) and accompanying input data buffer. The latch and buffer reads back the output data (read @ 37A) with an accompanying input buffer for read-back (read @ 37A). The input buffer is for reading printer input signals (read @ 379), I/O address decoding, data transceiver, and interrupt logic. The interrupt is (logically) ACKNOWLEDGE* if interrupts are enabled (37A Bit 4).

ONCE TRIGGERED BY SOFTWARE THE INTERGRATOR CIRCUIT PRODUCES A PULSE THE DURATION OF WHICH IS DEPENDENT ON JOYSK POSITION.

Figure 12. Joystick I/F

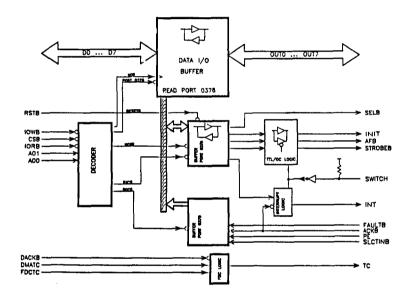


Figure 13. Printer Block Diagram

Floppy Disk Controller Interface

The Floppy Disk Controller interface consists of the 765 controller and support circuitry. The clocks are generated by the Timing Control Generator. The 4.00 MHz (FDCCLK) signal is applied to the FDC for its internal processor clock (CLK pin 19). FDC WCK is a 250 nanosecond pulse every 2.0 microseconds. The descriptions of several of the control signals are discussed in the Timing Control Generator. Counter U26 is used to add pre-compensation to the MFM coded write data (250 nanosecond pulse every 2.0 microseconds maximum). The 765 FDC signals "early" and "late" determine the number of 8 MHz clock periods (125 nanoseconds) the write data is delayed thru U29 - normal = 6, early = 4, late = 7. Data separator U29 converts "raw data" from the drive into read data (RDD) and read clock (RDW).

Video System Logic

A major block of the Tandy 1000 EX is the video interface circuitry. A block diagram of the video controller circuit is shown in Figure 14. This custom part contains all of the logic necessary to generate an IBM compatible color video display. The video interface logic consists of the 84 pin custom video circuit, 8 - 64K X 4 RAMs, a 74LS244 buffer, and associated logic for generation of composite video.

The Tandy 1000 EX video interface circuitry controls 256K of memory. See Video System Memory Map, Figure 15. This RAM is shared by the CPU and the video. Normally, the video only requires 16K or 32K for the video screen and the remainder of the 256K is available for system memory uses.

The Tandy 1000 EX video interface custom circuit is composed of a 6845 equivalent design, dynamic RAM address generation/timing (see Figure 16.), and video attribute controller logic.

Normal functioning of the video interface custom circuit is as follows: After the 6845 is programmed with a correct set of operating values (see Table 1), the address inputs to the dynamic RAMs are generated by a 4:1 multiplexer. This MUX switches between video (6845) addresses and CPU addresses as well as between row and column addresses. In addition, the video interface chip provides the RAM timing signals and generates a wait signal to CPU for proper synchronization with the video RAM access cycles.

The outputs from the RAM chips are only connected to the video interface custom circuit, so all CPU read/write operations are buffered by this part. During a normal display cycle, video data from the RAM chips is first latched in the Video Attribute latch and the Video Character latch. The video interface requires a memory organization of 64K X 16 and will latch 16 bits of memory during each access to RAM. From the output of the two latches, the data is supplied to the character ROM for the Alpha modes or to the shift registers for graphics modes. A final 2:1 MUX is used to switch between foreground or background in the alpha mode.

From the 2:1 MUX, the RGBI data is combined with the PC color select data and latched in the Pre-Palette latch. This latch synchronizes the RGBI data before it is used to address the palette.

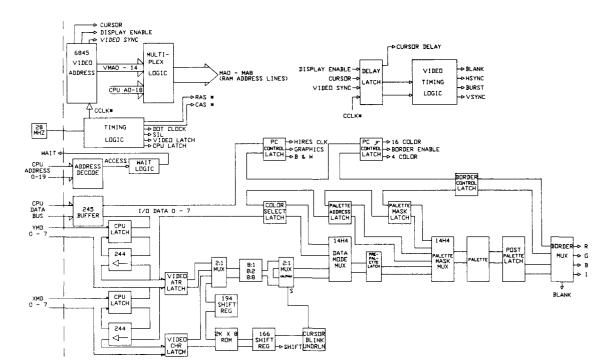


Figure 14 Video Controller Block Diagram

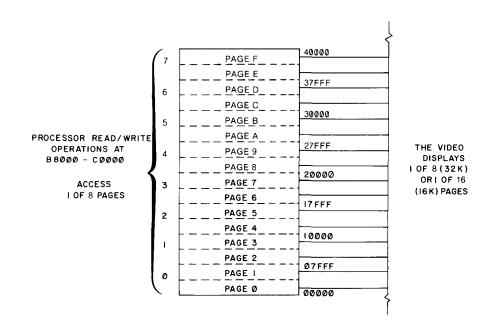


Figure 15. Video System Memory Map

Main System Board Ram Timing Specification

AC Operating Conditions and Characteristics

				
Parameter	Symbol	Min.	Max.	Units
Random Read or Write Cycle Time	tRC	279		ns
Read Write Cycle Time	tRWC	279		ns
Access Time from Row Address	tRAC		200	ns
Strobe		1		
Access Time from Column Address	tCAC	i	100	ns
Output Buffer and Turn-Off Delay	tOFF	1 0	30	ns
Row Address Strobe Precharge Time	tRP	100		ns
Row Address Strobe Pulse Width	tRASI	170		ns
Column Address Strobe Pulse Width	tCAS	130		ns
Row Address Setup Time	tASR	0		ns
Row Address Hold Time	tRAH	20		ns
Column Address Setup Time	tASC	0		ns
Column Address Hold Time	tCAH	35		ns
Transition Time (Rise and Fall)	tТ		50	ns
Read Command Setup Time	tRCS	0		ns
Read Command Hold Time	tRCH	0		ns
Read Command Hold Time Referenced	tRRH	0		ns
to RAS			l	
Write Command Hold Time	tWCH	35		ns
Write Command Hold Time Referenced	tWCR	95		ns
to RAS				
Write Command Pulse Width	tWP	35		ns
Write Command to Row Strobe Lead	tRWL	45		ns
Time		1		i i
Write Command to Column Strobe	tCWL	45		ns
Lead Time				
Data in Setup Time	tDS	0		ns
Data in Hold Time	tDH	35	[ns
Data in Hold Time Referenced to	tDHR	95		ns
RAS			ì]
Column to Row Strobe Precharge	tCRP	0	 	ns
Time				1
RAS Hold Time	tRSH	85	i	ns
Refresh Period	tRFSH		2.0	ns
WRITE Command Setup Time	tWCS	0		ns
CAS to WRITE Delay	tCWD	45	l	ns
RAS to WRITE Delay	tRWD	120		ns
CAS Hold Time	tCSH	200		ns
0.10 1.02	00011		1	
I		' <i>—</i>	·——	١ ــــــــــ ١

Figure 16. Main System Board RAM Timing Specification

PROGRAMMING TABLE FOR THE 6845 All Values in Hex (Decimal)

Register	,	80 x 25	Low Res.				Low Res	High Res
Address	Alpha	Alpha	Graphics	Graphics	Alpha	Alpha	Graphics	Graphics
00 Horizontal Total	38 (56)	71 (113)	38 (56)	71 (113)	38 (56)	71 (113)	38 (56)	71 (113)
Horizontal								
01 Displayed	28 (40)	50 (80)	28 (40)	50 (80)	28 (40)	50 (80)	28 (40)	50 (80)
Horizontal]					
02 Sync Position	2D (45)	59 (89)	2D (45)	59 (89)	2D (45)	59 (89)	2D (45)	59 (89)
Horizontal								
03 Sync Width	08 (8)	10 (16)	08 (8)	10 (16)	08 (8)	10 (16)	08 (8)	10 (16)
04 Vertical Total	IC (28)	IC (28)	7F (127)	3F (63)	IF (31)	IF (31)	7F (127)	3F (63)
Vertical			0.5.15	25 151	25.451	25.45	0.5 (5)	26 (6)
05 Total Adjust	01 (1)	01 (1)	06 (6) 	06 (6)	06 (6)	06 (6)	06 (6)	06 (6)
Vertical								
06 Displayed	19 (25)	19 (25)	64 (100)	32 (50)	19 (25)	19 (25)	64 (100)	32 (50)
Vertical								
07 Sync Position	1A (26)	1A (26)	70 (112)	38 (56)	1C (28)	1C (28)	70 (112)	38 (56)
08 Interlace Mode	02 (2)	02 (2)	02 (2)	02 (2)	02 (2)	02 (2)	02 (2)	02 (2)
Max Scan	ļ			·	·			
09 Line Address	08 (8)	08 (8)	01 (1)	03 (3)	07 (7)	07 (7)	01 (1)	03 (3)
10 Cursor Start	06 (6)	06 (6)	06 (6)	06 (6)	06 (6)	06 (6)	06 (6)	06 (6)
						1		
11 Cursor End	07 (7)	07 (7)	07 (7)	07 (7)	07 (7)	07 (7)	07 (7)	07 (7)
Start	1	l						
12 Address (High)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)
Start	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)
13 Address (Low)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)	00 (0)
		Monito	r Mode		•——	TV M	ode	

Table 1

The palette mask MUX is used to switch between incoming RGBI data and the palette address register. During a CPU write to the palette, this address register selects one of the 16 palette locations. Also, the palette mask MUX allows any of the input RGBI bits to be set to zero.

The palette allows the 16 colors to be remapped in any desired organization. Normally the pallete is set for a 1:1 mapping (red = red, blue = blue, etc.) for PC compatibility. However, instantly changing the on-screen colors is a very powerful tool for animation or graphics programs.

After the palette, the RGBI data is resynchronized in the Post Palette register. The final logic before the RGBI data is buffered off the chip is the Border MUX. This MUX allows the Border to be replaced with any color selected by the border color latch. This latch is normally disabled in PC modes, but it is used in all PCjr modes.

1/O MAP SUMMARY

Block	Usage	Function
0000-001F 0020-003F 0040-005F 0060-007F 0080-009F 00A0-00BF 00C0-00DF 00E0-01FF 0200-020F 0210-031F 0320-032F 0330-036F 0370-037F	0000-000F 0020-0021 0040-0043 0060-0063 0080-0083 00A0 00C0-00C1 0200-0201	DMA Function Interrupt Controller Timer PIO Function DMA Page Register NMI Mask Register Sound Generator Reserved Joystick Interface Reserved Reserved Hard Disk Not Assigned Printer
0380-03CF 03D0-03DF 03E0-03EF 03F0-03FF	All 03F2,F4,F5	Not Used System Video Reserved Floppy Disk Controller
Address 0000	Internal Flip, Internal Flip, Internal Flip, IOR* = O: Channel O Internal Flip, Internal Flip,	Not Usable Base and Current Address /Flop = 0: Write A0-A7 /Flop = 1: Write A8-A15 Current Address /Flop = 0: Read A0-A7 /Flop = 1: Read A8-A15
0001	Internal Flip, Internal Flip, IOR* = 0: Channel 0 Internal Flip,	Base and Current Word Count /Flop = 0: Write W0-W7 /Flop = 1: Write W8-W15 Current Word Count /Flop = 0: Read W0-W7 /Flop = 1: Read W8-W15
0002	Internal Flip, Internal Flip, IOR* = 0: Channel 1 Internal Flip,	Base and Current Address /Flop = 0: Write A0-A7 /Flop = 1: Write A8-A15 Current Address /Flop = 0: Read A0-A7 /Flop = 1: Read A8-A15

Address	Description
0003	DMA Controller IOW* = 0: Channel 1 Base and Current Word Count Internal Flip/Flop = 0: Write W0-W7 Internal Flip/Flop = 1: Write A8-A15 IOR* = 0: Channel 1 Current Word Count Internal Flip/Flop = 0: Read W0-W7 Internal Flip/Flop = 1: Read W8-W15
0004	<pre>DMA Controller IOW* = 0: Channel 2 Base and Current Address</pre>
0005	DMA Controller IOW* = 0: Channel 2 Base and Current Word Count Internal Flip/Flop = 0: Write W0-W7 Internal Flip/Flop = 1: Write W8-W15 IOR* = 0: Channel 2 Current Word Count Internal Flip/Flop = 0: Read W0-W7 Internal Flip/Flop = 1: Read W8-W15
0006	DMA Controller IOW* = 0: Channel 3 Base and Current Address
0007	<pre>DMA Controller IOW* = 0: Channel 3 Base and Current Word Count</pre>

0008	DMA Controller IOW* = 0, Write Command Register
Bit	Description
0	0 = Memory to Memory Disable
1	<pre>1 = Memory to Memory Enable 0 = Channel 0 Address Hold Disable 1 = Channel 0 Address Hold Enable X</pre>
2	0 = Controller enable 1 = Controller disable
3	<pre>0 = Normal timing 1 = Compressed timing X</pre>
4	0 = Fixed priority 1 = Rotating priority
5	<pre>0 = Late write selection 1 = Extended write selection X = If bit 3 = 1</pre>
6	<pre>0 = DREQ sense active high 1 = DREQ sense active low</pre>
7	0 = DACK sense active low 1 = DACK sense active high
	<pre>IOR* = 0, Read Status Register</pre>
Bit 0 1 2 3 4 5 6 7	Description 1 = Channel 0 has reached TC 1 = Channel 1 has reached TC 1 = Channel 2 has reached TC 1 = Channel 3 has reached TC 1 = Channel 0 Request 1 = Channel 1 Request 1 = Channel 2 Request 1 = Channel 3 Request 1 = Channel 3 Request
0009	<pre>DMA Controller IOW* = 0, Write Request Register</pre>
Bit 0-1	Description Bitl Bit0 0 0 Select channel 0 0 1 Select channel 1 1 0 Select channel 2 1 1 Select channel 3
2	0 Reset request bit 1 Set request bit
3-7	Don't Care IOR* = 0, Illegal

	•
A000	DMA Controller IOW* = 0, Write Single Mask Register
Bit 0-1 2 3-7	Description Bitl Bit0 0 0 Select channel 0 mask bit 0 1 Select channel 1 mask bit 1 0 Select channel 2 mask bit 1 1 Select channel 3 mask bit 0 Clear mask bit (Disable Channel) 1 Set mask bit (Disable Channel) Don't care IOR* = 0, Illegal
000В	DMA Controller IOW* = 0, Write Mode Register
Bit 0-1	Description Bit Bit0 0 0 Channel 0 select 0 1 Channel 1 select 1 0 Channel 2 select 1 1 Channel 3 select
2-3	Bit3 Bit2 0 0 Verify transfer 0 1 Write transfer to memory 1 0 Read transfer to memory 1 1 Illegal X If bits 6 and 7 = 11
4	0 Autoinitialization disable 1 Autoinitialization enable
5	O Address increment select
6-7	Bit7 Bit6 0 0 Demand mode select 0 1 Single mode select 1 0 Block mode select 1 1 Cascade mode select 1 IOR* = 0, Illegal
000c	<pre>DMA Controller IOW* = 0, Clear Byte Pointer Flip/Flop IOR* = 0, Illegal</pre>

Bit4 = 1:

000D	<pre>DMA Controller IOW* = 0, Master Clear IOR* = 0, Read Temporary Register</pre>
000E	<pre>DMA Controller IOW* = 0, Clear Mask Register IOR* = 0, Illegal</pre>
000F	DMA Controller IOW* = 0, Write all Mask Register Bits
Bit	Description
0	0 = Clear channel 0 mask bit (Enable)
1	<pre>1 = Set channel 0 mask bit (Disable) 0 = Clear channel 1 mask bit (Enable)</pre>
1	1 = Set channel 1 mask bit (Disable)
2	<pre>0 = Clear channel 2 mask bit (Enable)</pre>
_	<pre>1 = Set channel 2 mask bit (Disable)</pre>
3	<pre>0 = Clear channel 3 mask bit (Enable) 1 = Set channel 3 mask bit (Disable)</pre>
4 -7	Don't care
• /	IOR* = Illegal
0010 - 001F	Not Used
Address	Description
0020	8259A Interrupt Controller
Note:	Initialization Words are setup by the operating system and are generally not to be changed. Writing an initialization word may cancel pending interrupts.

Bit0 = 0: ICW4 needed

= 1: ICW4 not needed

Bit1 = 0: Cascade Mode

= 1: Single

Bit2 = Not used

Bit3 = 0: Edge Triggered Mode

= 1: Level Triggered Mode

when the SL bit is active

Bit5 - 7: Not Used

INITIALIZATION COMMAND WORD 1

```
Bit4 = 0 &
                       OPERATION CONTROL WORD 2
Bit3 = 0
                       Bit0 - 2:
                                   Determine the interrupt level acted on
                                   when the SL bit is active
                                   Interrupt Level = 0 1 2 3 4 5 6 7
                                         Bit 0 (L0): 0 1 0 1 0 1 0 1
                                         Bitl (Ll):
                                                       0 0 1 1 0 0 1 1
                                        Bit2 (L2):
                                                       0 0 0 0 1 1 1 1
                       Bit5 - 7
                                   Control Rotate and End of Interrupt
                                    modes
B7 B6 B5
            Non-specific EOI command
Specific EOI command
                                                         End of Interrupt
End of Interest
 0
   0
 0
            Rotate on non-specific EOI command
 1
                                                         Automatic Rotation
 1
    0
            Rotate in Automatic EOI Mode (set)
                                                         Automatic Rotation
 ō
   0
            Rotate in Automatic EOI Mode (clear) *Rotate on Specific EOI command
                                                         Automatic Rotation
 1
                                                         Specific Rotation
    1
       1
 1
    1
            *Set priority command
                                                         Specific Rotation
       0
            No operation
       0
  *LO - L2 are used
Bit4 = 0 &
                       OPERATION CONTROL WORD 3
Bit3 = 1
                       Bit0 - 1:
                       Bitl Bit0- Read Register Command
                              0 - No Action
                         0
                              1 - No Action
                              0 - Read IR Register on next IOR* Pulse
                              1 - Read IS Register on next IOR* Pulse
                       Bit2 = 0:
                                   No Poll Command
                            = 1:
                                   Poll Command
                       Bit5 - 6:
                       Bit6 Bit5- Special Mask Mode
                              0 - No Action
                              1 - No Action
                              0 - Reset Special Mask
                              1 - Set Special Mask
```

Bit7 = 0

```
0021
```

8259A Interrupt Controller

INITIALIZATION CONTROL WORD 2

Bit0 - 7: Not Used

Bit3 - 7: T3 - T7 of Interrupt Vector Address (8086/8088 Mode)

INITIALIZATION CONTROL WORD 3 (Master Device)
Bit0 - 7: =1 Indicated IR input has a slave

=0 Indicated IR input does not have a slave

INITIALIZATION CONTROL WORD 3 (Slave Device)

Bit0 - 2 = IDO - 2

Bit0 Bit1 Bit2 - Slave ID # n 0 0 0 0 0 1 1 0 1 0 2 0 1 1 3 0 4 1 0 1 0 1 5 0 1 1 6 1 1 1

Bit3 - 7 = 0 (Not Used)

INITIALIZATION CONTROL WORD 4

Bit0: Type of Processor

=0 MCS-80/85 Mode

=1 8086/8088 Mode

Bitl: Type of End Of Interrupt

=0 Normal EOI

=1 Auto EOI

Bit2 - 3: Buffering Mode

Bit3 Bit2

0 X Non-buffered Mode 1 0 Buffered Mode/Slave 1 Buffered Mode/Master

Bit4: Nesting Mode

=0 Not Special Fully Nested Mode

=1 Special Fully Nested Mode

Bit5 - 7: =0 (Not Used)

OPERATION CONTROL WORD 1 (IOR*/IOW*)

Bit0 - 7: Interrupt Mask for IRO0 - IRO7

=0 Mask Reset (Enable)

=1 Mask Set (Disable)

NOTE:

Peripherals Requesting an interrupt service must generate a low to high edge and then remain at a logic high level service, must generate a low to high edge and then remain at a high until service is acknowledged. Failure to do so will result in a Default Service for IRQ7

```
0022-003F
                     Not Used
Address
                   Description
0040/0044
                   8253-5 Timer
                   IOW* = 0: Load Counter No. 0
                   IOR* = 0:
                              Read Counter No. 0
0041/0045
                   8253-5 Timer
                   IOW* = 0: Load Counter No. 1
                   IOR* = 0:
                              Read Counter No. 1
Address
                   Description
                   8253-5 Timer
0040/0044
                   IOW* = 0: Load Counter No. 0
                   IOR* = 0:
                              Read Counter No. 0
0041/0045
                   8253-5 Timer
                   IOW* = 0: Load Counter No. 1
                   IOR* = 0:
                              Read Counter No. 1
0042/0046
                   8253-5 Timer
                   IOW* = 0: Load Counter No. 2
                             Read Counter No. 2
                   IOR* = 0:
0043/0047
                   8253-5 Timer
                   IOW* = 0: Write Mode Word
                         Control Word Format
                        Bit0: BCD
                           = 0: BCD Counter (4 Decades)
                           = 1: Binary Counter 16 bits
                         BIT1 - 3: Mode Selection
                          Bit3 Bit2 Bit1
                           O
                                 0
                                      0
                                            Mode 0
                           0
                                 0
                                            Mode 1
                                      0
                           Х
                                 1
                                      0
                                            Mode 2
                                            Mode 3
                           Х
                                 1
                                      1
                           1
                                 0
                                      0
                                            Mode 4
                           1
                                 0
                                            Mode 5
                                      1
                         BIT4 - 5:
                                      Read/Load
                          Bit5 Bit4
                           0
                                0
                                      Counter Latching Operation
                           0
                                1
                                      Read/Load LSB only
                           1
                                      Read/Load MSB only
                                0
                           1
                                1
                                      Read/Load LSB first, then MSB
                         BIT6 - 7:
                                    Select Counter
                          Bit7 Bit6
                           0
                                0
                                      Select Counter 0
                           0
                                1
                                      Select Counter 1
                           1
                                0
                                      Select Counter 2
                           1
                                1
                                      Illegal
                   IOR* = 0:
                               No-Operation 3-State
0048-005F
                   Not Used
```

0060		PORT A / KEYBOARD INTERFACE CONTROL PORTS
0000		(READ ONLY)
I	BIT	Description
	0	Keyboard Bit 0-LSB
	1	Keyboard Bit l
	2	Keyboard Bit 2
	3	Keyboard Bit 3
	4	Keyboard Bit 4
	5	Keyboard Bit 5
	6	Keyboard Bit 6
	7	Keyboard Bit 7-MSB
0061		PORT B - READ or WRITE
E	BIT	Description
	0	l = 8253 Gate #2 Enable
	1	l = Speaker Data Out Enable
	2	Not Used
	3	Not Used
	4	<pre>1 = Disable Internal Speaker (Sound Control 2)</pre>
	5	0 = Sound Control 0
	6	0 = Sound Control 1
	7	1 = Keyboard Clear
	•	1 Noj bouru Ozour
0062		PORT C - READ/WRITE: Bits 0-3; READ ONLY:
0062		PORT C - READ/WRITE: Bits 0-3; READ ONLY: BITS 4-7
	BIT	
	BIT 0	BITS 4-7
		BITS 4-7 Description
	0 1	BITS 4-7 Description (Output) Not Used (Output) Multi-Data
	0	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate
	0 1 2	BITS 4-7 Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock
	0 1 2	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate
	0 1 2	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate)
	0 1 2 3	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate) 1 = 7.16 MHz (Default by Boot ROM)
	0 1 2 3	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate) 1 = 7.16 MHz (Default by Boot ROM) Video Ram Size
	0 1 2 3	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate) 1 = 7.16 MHz (Default by Boot ROM) Video Ram Size 0 = 128K Video
	0 1 2 3	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate) 1 = 7.16 MHz (Default by Boot ROM) Video Ram Size 0 = 128K Video 1 = 256K Video
	0 1 2 3	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate) 1 = 7.16 MHz (Default by Boot ROM) Video Ram Size 0 = 128K Video 1 = 256K Video 8253 Out #2
	0 1 2 3	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate) 1 = 7.16 MHz (Default by Boot ROM) Video Ram Size 0 = 128K Video 1 = 256K Video 8253 Out #2 Monochrome Mode 0 = Color Monitor
	0 1 2 3	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate) 1 = 7.16 MHz (Default by Boot ROM) Video Ram Size 0 = 128K Video 1 = 256K Video 8253 Out #2 Monochrome Mode
	0 1 2 3 4	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate) 1 = 7.16 MHz (Default by Boot ROM) Video Ram Size 0 = 128K Video 1 = 256K Video 1 = 256K Video 8253 Out #2 Monochrome Mode 0 = Color Monitor 1 = 350 Line Monitor, Mono
E	0 1 2 3 4 5 6	Description (Output) Not Used (Output) Multi-Data (Output) Multi-Clock (Output) CPU Clock Rate 0 = 4.77 MHz (PC Compatible Rate) 1 = 7.16 MHz (Default by Boot ROM) Video Ram Size 0 = 128K Video 1 = 256K Video 8253 Out #2 Monochrome Mode 0 = Color Monitor 1 = 350 Line Monitor, Mono 0 = Reserved

```
0081
                    WRITE ONLY
Address
                   Description
  Bit 0
                   DMA Ch 2 Address Al6
  Rit 1
                   DMA Ch 2 Address Al7
  Bit 2
                    DMA Ch 2 Address A18
  Bit 3
                   DMA Ch 2 Address Al9
  Bit 4
                   Not Used
  Bit 5
                   Not Used
                   Not Used
  Bit 6
Bit 7
                   Not Used
0082
                   WRITE ONLY
Address
                   Description
  Bit 0
                   DMA Ch 3 Address Al6
                   DMA Ch 3 Address Al7
  Bit 1
  Bit 2
                   DMA Ch 3 Address Al8
  Bit 3
                    DMA Ch 3 Address A19
  Bit 4
                    Not Used
  Bit 5
                   Not Used
                   Not Used
  Bit 6
  Bit 7
                   Not Used
0083
                   WRITE ONLY
Address
                    Description
  Bit 0
                   DMA Ch 0 - 1 Address Al6
  Bit 1
                   DMA Ch 0 - 1 Address Al7
  Bit 2
                   DMA Ch 0 - 1 Address Al8
                   DMA Ch 0 - 1 Address Al9
  Rit 3
                   Not Used
  Bit 4
  Bit 5
                    Not Used
  Bit 6
                   Not Used
  Bit 7
                   Not Used
0084-008F
                   Not Used
00A0-00A7
                    NMI Mask Register, Write only
Bit
                    Description
 0
                    External Video
                    0 = Normal Operation
                    1 = All Video Addresses and Ports are Disabled
                    MEMCONFIG 1 - A17 128K SW
MEMCONFIG 2 - A18 256K SW
  1
  2
  3
                    MEMCONFIG 3 - A19 512K SW
 4
                    "1" Enable 256K of Video RAM
                    Not Used
  6
                    Not Used
  7
                    l = Enable NMI
                    0 = Disabled
```

BIT 4	BIT 3	BIT 2	BIT 1	MEMORY START	MEMORY LENGTH	MEMORY RANGE
256K	- 10	-10				
Enable	A19	A18	Al7			
0	0	0	0	0 0000	128K	0 0000-1 FFFF
0	0	0	1	2 0000	128K	2 0000-3 FFFF
0	0	1	0	4 0000	128K	4 0000-5 FFFF
0	0	1	1	6 0000	128K	6 0000-7 FFFF
0	1	0	0	8 0000	128K	8 0000-9 FFFF
1	0	O	1	0 0000	256K	0 0000-3 FFFF
1	0	1	0	2 0000	256K	2 0000-5 FFFF
1	0	1	0	4 0000	256K	4 0000-7 FFFF
1	1	0	0	6 0000	256K	6 0000-9 FFFF

NOTE: To turn off on-board video, be sure Port AOH, Data Bit 0 is a "1" AND Video Array Register 3 (Selected by writing 03 into 3DAH) Data Bit 0 (Write to Port 3DEH) must be = "0" to disable 3R8H and 3RAH.

00A8 - 00AF Not Used Address Description 00C0-00C7 Sound SN76496 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 = 1 0 0 0 F6 F7 F8 Update Tone Frequency 1 = 0 х FΩ Fl F2 F3 F4 F5 Additional Frequency Data = 1 O 0 1 A0 Al **A2** Α3 Update Tone Attenuation 1 O = 1 1 n F6 F7 F8 F9 Update Tone Frequency 2 = 0х F0 Fl F2 F3 F4 F5 Additional Frequency Data = 1 0 1 1 ΑO Al A2 A3 Update Tone Attenuation 2 $= \overline{1}$ O F7 F9 Update Tone Frequency 3 1 0 F6 F8 F4 = 0X F0 F1 F2 F3 F5 Additional Frequency Data = 11 O 1 A0 Al A2 **A**3 Update Tone Attenuation 3 = 1 1 1 0 FB NFO NFT Update Noise Control Х 1 1 1 AΩ Αl A2 **A3** Update Noise Attenuation 00C8-00DF Not Used 00E0-01FF Reserved WRITE (IOW*) 0200 - 0207Joystick Clear (Resets Integrator to Zero) 0208 - 020F Not Used

```
0201
      READ
                  R = Right Joystick, L = Left Joystick
 Bit
                  Description
  0
                  R - X Horizontal Position
                  R - Y Vertical Position
  1
                  L - X Horizontal Position
  2
  3
                  T. - Y Vertical Position
  4
                  R Button #1 (Logic 0 = Button Depressed)
  5
                  R Button #2 (Logic 0 = Button Depressed)
  6
                  L Button #1 (Logic 0 = Button Depressed)
  7
                  L Button #2 (Logic 0 = Button Depressed)
Addresses
0370 - 0377
                  Not Used
0378
                  Printer - Data Latch
 Bit.
                  Description
  n
                  Data Bit 0 - LSB
  1
                  Data Bit 1 -
  2
                  Data Bit 2 -
  3
                  Data Bit 3 -
  4
                  Data Bit 4 -
  5
                  Data Bit 5 -
  6
                  Data Bit 6 -
  7
                  Data Bit 7 - MSB
 0379
                  Printer - Read Status
                  Description
  Bit
   0
                  Not Used
   1
                  Not Used
   2
                  Not Used
   3
                  0 = Error
   4
                  1 = Printer Select
   5
                  0 = \text{End of Form}
   6
                  0 = Acknowledge
   7
                  0 = Busy
 037A (037E)
                  Printer - Control Latch
  Bit
                  Description
   a
                  0 = Strobe
   1
                  0 = Auto FD XT
   2
                  0 = Initialize
   3
                  0 = Select Printer
   4
                  l = Enable Interrupt
   5
                  0 = Enable Output Data
   6
                  Not Used
                  Not Used
   7
```

037B 037C 037D 037F - 03D3	Not Used Printer - Data Latch Printer - Read Status Not Used
03D4 03D5 03D6 03D7	6845 Address Register 6845 Data Register Not Used Not Used
03D8 Bit 0	Mode Select Register High Resolution Clock =0: Selects 40 by 25 Alphanumeric Mode =1: Selects 80 by 25 Alphanumeric Mode
Bit l	Graphics Select =0: Selects Alphanumeric Mode
Bit 2	<pre>=1: Selects 320 by 200 Graphics Mode Black and White =0: Selects Color Mode =1: Selects Black and White Mode</pre>
Bit 3	Video Enable =0: Disables Video Signal
Bit 4	=1: Enables Video Signal 640 Dot Graphics =0: Disables 640 by 200 B&W Graphics Mode
Bit 5	<pre>=1: Enables 640 by 200 B&W Graphics Mode Blink Enable =0: Disables Blinking =1: Enables Blinking</pre>
03D9 Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5	Color Select Register Background Blue Background Green Background Red Background Intensity Foreground Intensity Color Select
03DA, 03DE	Write Video Array Address & Read Status (3DA) Write Video Array Data (3DE)

READ (3DA) 00 Bit 0 00 Bit 1 00 Bit 2 00 Bit 3 00 Bit 4	Display Inactive Light Pen Set Light Switch Status Vertical Retrace	WRITE (3DE) Not Used Not Used Not Used Not Used Not Used Not Used
01 Bit 0 01 Bit 1 01 Bit 2 01 Bit 3		Palette Mask 0 Palette Mask 1 Palette Mask 2 Palette Mask 3
02 Bit 0 02 Bit 1 02 Bit 2 02 Bit 3 02 Bit 5		Border Blue Border Green Border Red Border Intensity Reserved = 0
03 Bit 0 03 Bit 1 03 Bit 2 03 Bit 3 03 Bit 4 03 Bit 5		Mono Enable = "1" Reserved = 0 Border Enable 4-Color High Resolution 16 Color Mode Extra Video Mode
10-1F Bit 0 10-1F Bit 1 10-1F Bit 2 10-1F Bit 3 Bits 4 - 7		Palette Blue Palette Green Palette Red Palette Intensity Not Used
03DB 03DC	Clear Light Pen Latch (Not Preset Light Pen Latch (Not	
03DD Bit 0 1 2 3 4 5 6	Extended Ram Page Register Description Extended Addressing Modes Not Used Not Used CRT Video Page Address "17" CRT Video Page Address "18" CPU Page Address "17" CPU Page Address "18" Select 64K or 256K Ram	1

```
03DF
                CRT Processor Page Register - Video Mem Relative
Bit 0
                 Al4
                                    CRT Page 0
Bit 1
                 A15
                                    CRT Page 1
Bit 2
                                    CRT Page 2
                 A16
Bit 3
                 Al4
                                    Processor Page 0
Bit 4
                 A15
                                    Processor Page 1
Bit 5
                  A16
                                    Processor Page 2
Bit 6
                                    Video Address Mode 0
Bit 7
                                    Video Address Mode 1
03F1
                  Drive Select Switch
                  "1" DSO = DSO
                  "0" DSO = DS1
                  DOR Register (Write Only)
03F2, 3F0, 3F3
                  Bit0 - 1: Drive Select
                    Bitl Bit0
                     0 0
                                    Drive Select A*
                                    Drive Select B*
                     0
                         1
                  Bit2: 0 = FDC Reset
                  Bit3: 1 = Enable DMA Reg/Interrupt
                  Bit4: 1 = Drive A Motor On
                  Bit5: 1 = Drive B Motor On
                  Bit6: 1 = FDC Terminal Count
                  Bit7: Not Used
03F5, 3F7
03F4, 3F6
                FDC - Status (Read Only) - See FDC Specification
                FDC - Data (R/W) - See FDC Specification
03F8 - 03FF
                Not Used
For Ports 3F0 - 3F7, the following general conditions apply:
                  Al = Don't Care
                  For DOR, A2 = 0
                  For FDC, A2 = 1
```

TANDY COMPUTER PRODUCTS

T	 	r	T
DATA	IBM PC 0062 PORT C READ ONLY	IBM PCjr 0062 PORT C READ ONLY	TANDY 1000 EX 0062 PORT C
BIT 0	CONFIG SW16 OR (R/W)	1 = KEYBOARD LATCHED	(OUT) NOT USED
	CONFIG SW12 (R/W)		
	SEE PORT 0061, BIT 2 (R/W)		
BIT 1	CONFIG SW15 (R/W)	0 = INTERNAL MODEM INSTALLED	(OUT) MULTI-DATA
BIT 2	CONFIG SW14 (R/W)	0 = DISKETTE DRIVE INSTALLED	(OUT) MULTI-CLOCK
BIT 3	CONFIG SW13 (R/W)	0 = 64K RAM EXPANSION	FAST (0=STD OPERATION) read/write "0"=4.77MHz "1"=7.16MHz
		INSTALLED	read/write "0"=4.77MHz "1"=7.16MHz
BIT 4	CASSETTE DATA IN (R)	SAME VIDEO	RAM SIZE READ ONLY 0=128K VIDEO 1=256K VIDEO
BIT 5	8253 OUT #2 (R)	SAME	(IN) SAME
BIT 6	l=I/O CHECK (PARITY ERROR) (R)	KEYBOARD DATA	MONOCHROME MODE 0=COLOR MONITOR 1=350 LINE MONITOR MONO
BIT 7	l=RAM PARITY ERROR (R)	KEYBOARD CABLE INSTALLED	RESERVED = 0
	HARDWARE LOGIC ATTACHED IS FOR INPUT ONLY.		IN TANDY 1000 THE HARDWARE LOGIC IS CONFIGURED SO THAT PORT C IS SPLIT WITH INPUT: PC4 PC7 OUTPUT: PC0 PC3

TANDY COMPUTER PRODUCTS

		,	
DATA	IBM PC 0061 PORT B READ OR WRITE	IBM PCjr 0061 PORT B READ OR WRITE	TANDY 1000 0061 PORT B READ OR WRITE
BIT 0	1=8253 GATE #2 ENABLED	SAME	SAME
BIT 1	SPEAKER DATA OUT	SAME	SAME
BIT 2	1=ENABLE READING	l=ALPHA (GRAPHICS)	NO FUNCTION
	CONFIG SW13 THRU 16		
- -	(I/O CHAN ROM SIZE) OR		
- -	0=ENABLE READING		
_ _	CONFIG SW12 (@PC0 PC3)		
BIT 3	1=CASSETTE MOTOR OFF	SAME	NO FUNCTION
BIT 4	0=ENABLE RAM PARITY	1=DISABLE CASSETTE MTR RELAY, INTERNAL BEEPER	1=DISABLE INTERNAL SPEAKER (SOUNDCONT2)
BIT 5	0=ENABLE I/O CH PARITY	SPKR SW 0	SOUND CONTROL 0
BIT 6	0=HOLD KEYBOARD CLK LOW	SPKR SW 1	SOUND CONTROL 1
BIT 7	0=ENABLE KEYBOARD	1=KEYBOARD CLEAR	1=KEYBOARD CLEAR
- -	1=CLEAR KEYBOARD AND		
-v-	ENABLE CONFIG SW 1-8		

TANDY COMPUTER PRODUCTS

VIDEO / SYSTEM MEMORY ADDRESS MAP

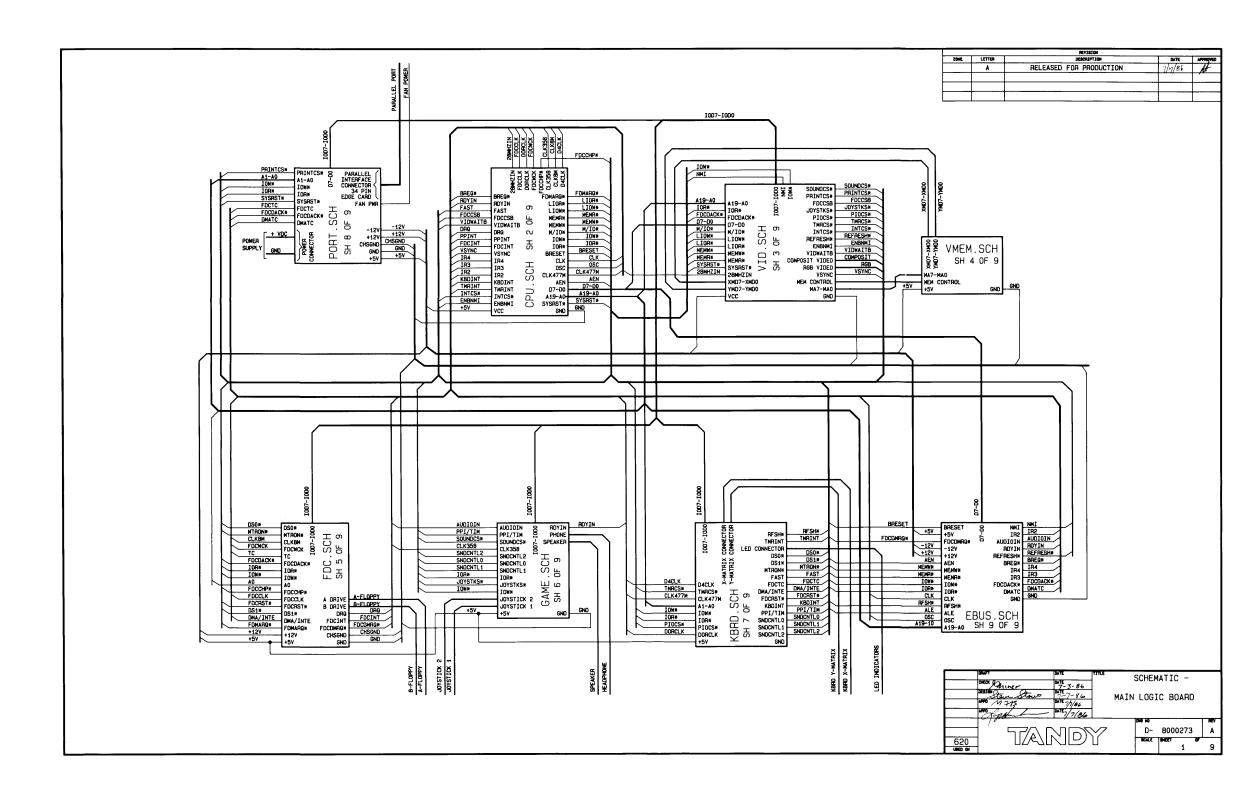
	MC3	MC2	MC1	VIDEO/SYSTEM	VIDEO/SYSTEM	VIDEO/SYSTEM
0A0	0A0	0A0	0A0	MEMORY	MEMORY	MEMORY
BIT	BIT	BIT	BIT	START	LENGTH	ADDRESS
4	3	2	1	ADDRESS		RANGE
1	A19	A18	A17		Ì	
i]				
0*	0	0	0	00000	128K	00000-1FFFF
				(0)]	
l	l	l	ll			
0	0	U	1	20000	128K	20000-3FFFF
l	l	ļ		(128K)		
0	0	1	0	40000	128K	40000-5FFFF
	ļ	ļ		(256K)		
\ <u>-</u>	0	1	<u> </u>	60000	128K	60000-7FFFF
0	"	i +	+	(324K)	TZOK	00000-/FFFF
	ł	ł		(324K)		
0	1	0	0-	80000	128K	80000-9FFFF
"	-			(512K)	1201	00000 31111
1	ľ			(32.01()	i	
1	0	0	1	00000	256K	00000-3FFFF
-)	1	_	(0)		
	ĺ				' [
1	0	1	0	20000	256K	20000-5FFFF
İ		[(128K)		
1	0	1	1	40000	256K	40000-7FFFF
				(156K)		
1	1	0	0	60000	256K	60000-9FFFF
				(384K)		
l	l	l	l	l l		

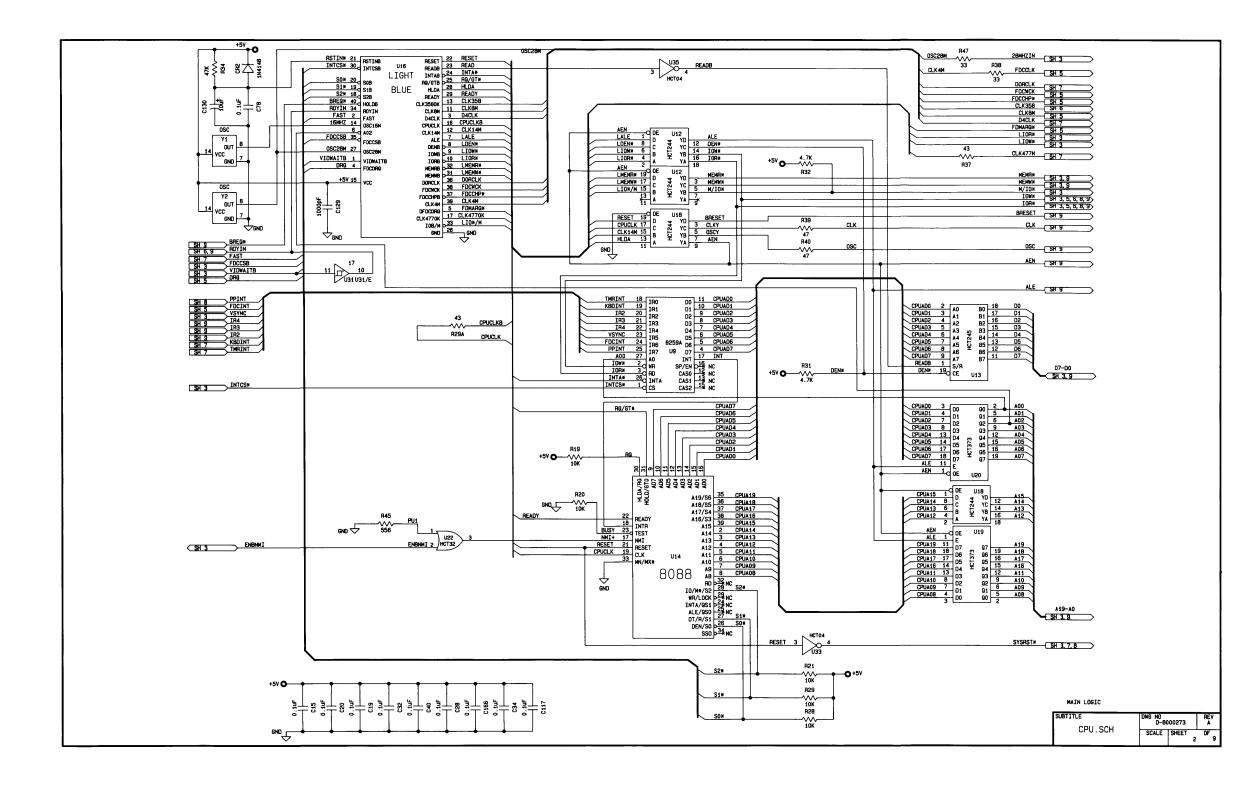
^{*} ENDBIP 256K OF VIDEO ROM IF "1"

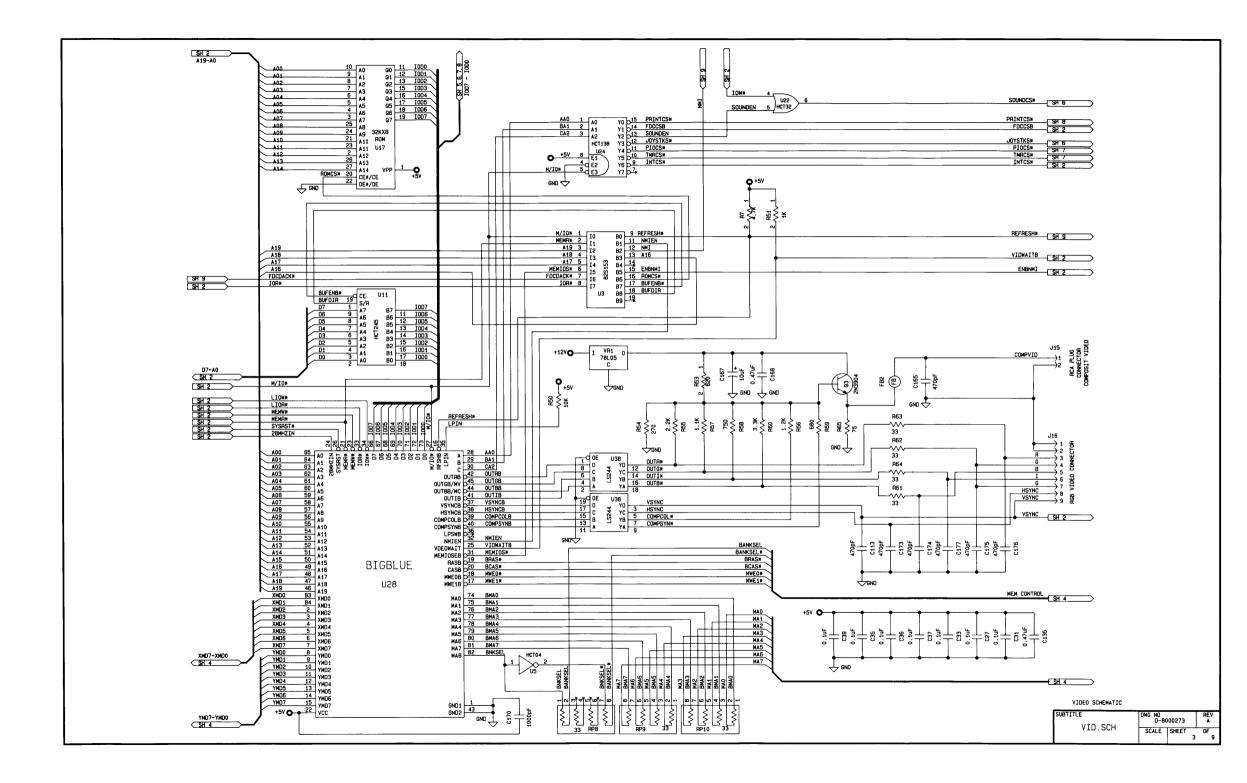
T1000 EX Main Logi		8859000
Symbol	Description	Number
Tandy 1000 EX Main		8709689A
(11.4×8.4)	-	
Cl,4-7,9-16,15A,		
18-24,26-39,78,		
104-108,111,112,	Capacitor 0.1 MFD 50V Axial	8374104
117,128,166,171 C41-48	Capacitor .33 MFD 50V Mono. Ax.	8374334
C100	Capacitor 100 PF 50V C. Disk	8301104
C101,130,167	Capacitor 10 MFD 16V Elec Ax.	8316101
C102,103,110,114,	Cupucitor to the for Elect the	***************************************
133,134,169	Capacitor 22 MFD 16V Elec Ax.	8316221
C109	Capacitor 2.2 MFD 16V Elec Ax.	8315221
Cll3,165,173-177	Capacitor 470 PFD 50V C. Disk	8301474
C115	Capacitor 100 MFD 16V Elec Ax.	8317101
Cl16,126,129,131,		
136,138,170	Capacitor 1000 PFD 50V C. Disk	8302104
C118-125	Capacitor 68 PFD 50V C. Disk	8300684
C127	Capacitor .022 MFD 63V 10% Poly	8393225
C132,135,168,172	Capacitor .47 MFD 50V Mono. Rad	.8384475 8301184
C137 C139-141,144-146,	Capacitor 180 PFD 50V C. Disk	0301104
153	Capacitor 20 PF 50V C. Disk	8300204
C142,143,147-152	Capacitor 2200 PFD C. Disk	8302224
C154-156,159-164	Capacitor 220 PFD 50V C. Disk	8301223
0101 100,100 101		
CR1,2	Diode 1N4148	8150148
CR3	Diode 1N5235 6.8V	8150235
E1,2	Staking Pins	8529014
FBl,2	Ferrite Bead	8419013
Jl	Connector, 2-Pin Header, Spkr.	8519193
J2	Connector, 6-Pin (Kybd Led) Connector, 12-Pin Flat Flex ZIF	8519293 8519309
J3,4 J5	Connector, 2-Pin Header Rt.	0313303
0.5	Angle Fan	8519308
Ј6	Connector, 6-Pin Power Rt.	8519186
50	Ang. (Rev. A Only)	0317100
J6	Connector, 6-Pin Power (Rev B)	8519281
J7	Connector, 13-Pin Flat Flex ZIF	8519310
J8	Connector, Sub Mini Jack	8519282
J9,10	Connector, 6-Pos. Rt. Angle	8519289
Jll	Connector, Dual 17-Pin Straight	8519120
J12	Connector, Dual 31-Pin Straight	
~1.5	I/O Pin Header .687" Ht	8519290
J15	Connector, Single Plug	8519287

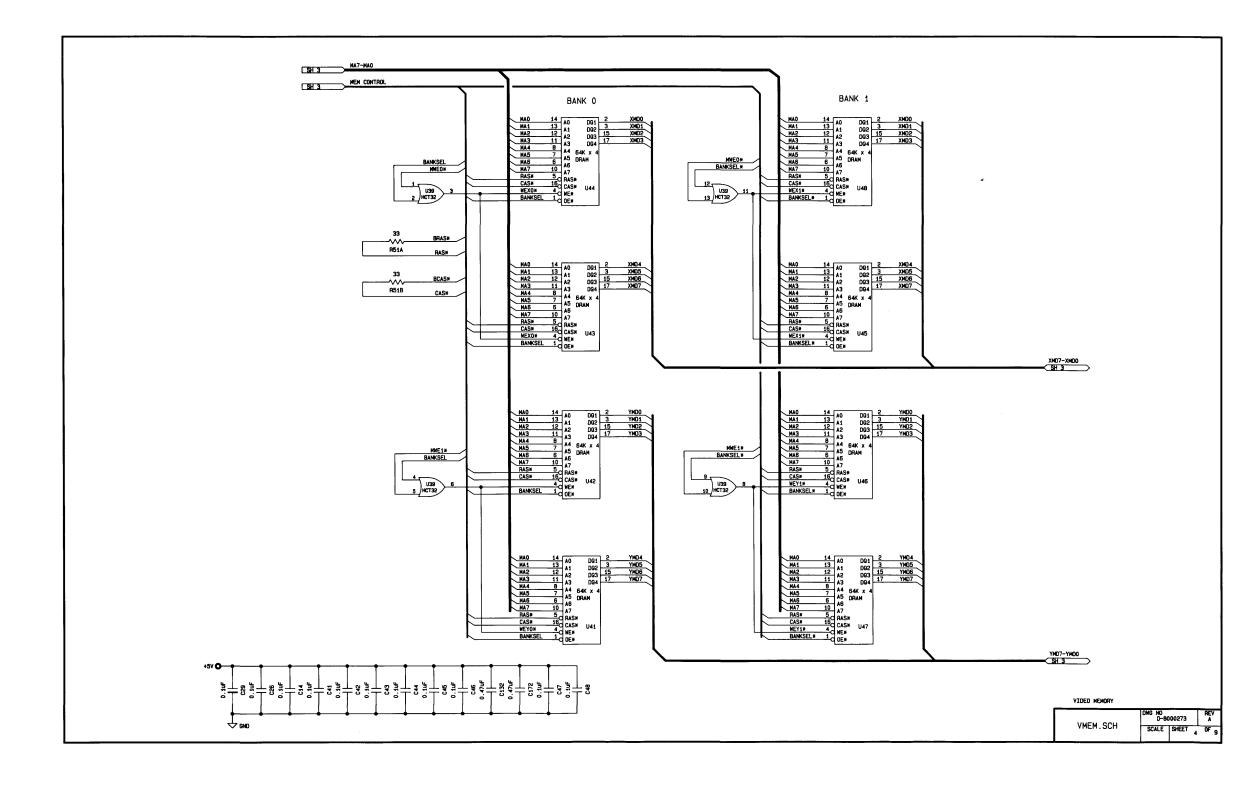
Symbol	Description	Number
J16	Connector, 9-Pin Rt. Angle,	
	Female "D" Sub	8519245
J16	Nut, #4-40 KEPS	8579003
J16	Screw, #4-40 X 3/8"	8569002
Ql	Transistor 2N3906	8100906
Q2	Transistor VMOS	8190104
Q3	Transistor 2N3904	8110904
Rl	Resistor, Variable 1K	8279209
R2	Resistor 3.9K Ohm 1/4 Watt 5%	8207239
R3,35	Resistor 10 Ohm 1/4 Watt 5%	8207010
R4-6	Resistor 180 Ohm 1/4 Watt 5%	8207118
R7,15,31,32,46,		
48	Resistor 4.7K Ohm 1/4 Watt 5%	8207247
R8,18,41,49,55	Resistor 2.2K Ohm 1/4 Watt 5%	8207222
R9,59	Resistor 680 Ohm 1/4 Watt 5%	8207168
R10	Resistor 2.7K Ohm 1/4 Watt 5%	8207227
R13-14,17,19-21,	,	
23,25,28,29,42,		
44,50	Resistor 10K Ohm 1/4 Watt 5%	8207310
Rl6	Resistor 330 Ohm 1/4 Watt 5%	8207133
R22	Resistor 82.5K Ohm 1/4 Watt 1%	8200382
R24,26,33,43	Resistor 1 Meg Ohm 1/4 Watt 5%	8207510
R27,45	Resistor 560 Ohm 1/4 Watt 5%	8207156
R29A,37-40	Resistor 39 Ohm 1/4 Watt 5%	
R30,51	Resistor 1K Ohm $1/4$ Watt 5%	8207210
R34	Resistor 47K Ohm 1/4 Watt 5%	8207347
R36	Resistor 680K Ohm 1/4 Watt 5%	8207468
R47,51A,51B,61-64	Resistor 33 Ohm $1/4$ Watt 5%	8207033
R52	Resistor 470 Ohm 1/4 Watt 5%	8207147
R53	Resistor 620 Ohm 1/4 Watt 5%	8207162
R54	Resistor 270 Ohm 1/4 Watt 5%	8207127
R56	Resistor 1.2K Ohm 1/4 Watt 5%	8207212
R57	Resistor l.lK Ohm 1/4 Watt 5%	8207211
R58	Resistor 750 Ohm 1/4 Watt 5%	8207175
R60	Resistor 3.3K Ohm 1/4 Watt 5%	8207233
R65	Resistor 75 Ohm $1/4$ Watt 5%	8207075
RPl	Resistor Pak 33K Ohm 10-Pin SIP	
RP2	Resistor Pak 10K Ohm 6-Pin SIP	
RP3	Resistor Pak lK Ohm 6-Pin SIP	
RP4	Resistor Pak 10K Ohm 10-Pin SIP	
RP5	Resistor Pak 33 Ohm 16-Pin DIP	
RP6	Resistor Pak 4.7K Ohm 8-Pin SIP	
RP7	Resistor Pak 150 Ohm 6-Pin SIP	
RP8-10	Resistor Pak 33 Ohm 8-Pin SIP	8295033

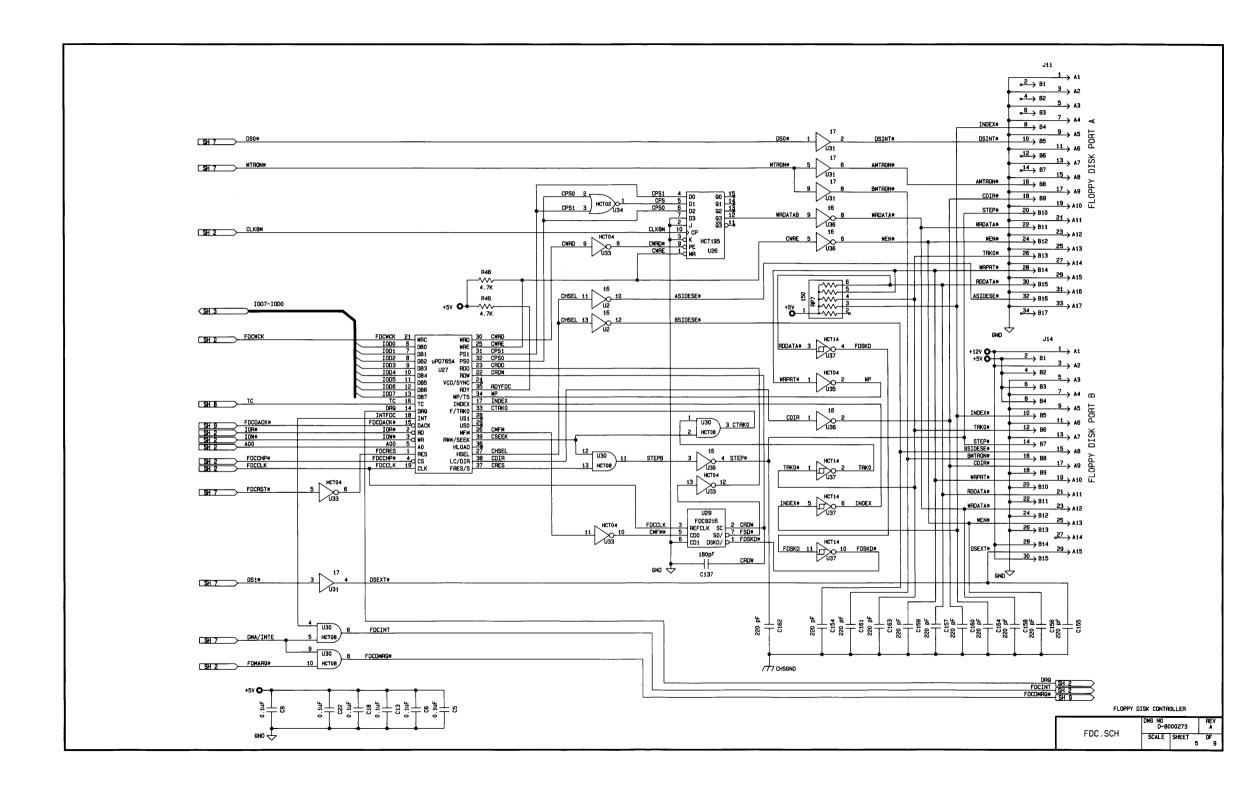
	Description	Number
ul	IC 14529	8030529
U2,36	IC 7416	8000016
U3,11,13	Socket 20-Pin DIP	8509009
	LM386 Audio Amp	8050386
U5,33,35	IC 74HCT04	8026004
U6,10,14,16,27,32	Socket 40-Pin DIP	8509002
บ7		8509001
υ9 , 17	Socket 28-Pin DIP	8509007
Ull,13	IC 74HCT245	8026245
	IC 74HCT244	8026244
บ15	Socket 16-Pin DIP	8509003
U19,20	IC HCT373	8026373
U22,39	IC 74HCT32	8026032
	IC 74HCT138	8026138
U26	IC 74HCT195	8026195
U28	Socket 84-Pin PLCC	8509031
U29	Socket 8-Pin DIP	8509011
U30	IC 74HCT08	8026008
	IC 7417	8000017
	IC 74HCT02	8026002
บ37	IC 74HCT14	8026014
U38	IC 74LS244	8020244
U41-48	Socket 18-Pin DIP	8509006
VRl	Regulator 78L05	8052805
Yl	Oscillator 16 MHz	8409034
¥2	Oscillator 28.63636 MHz 50 PPM	
		

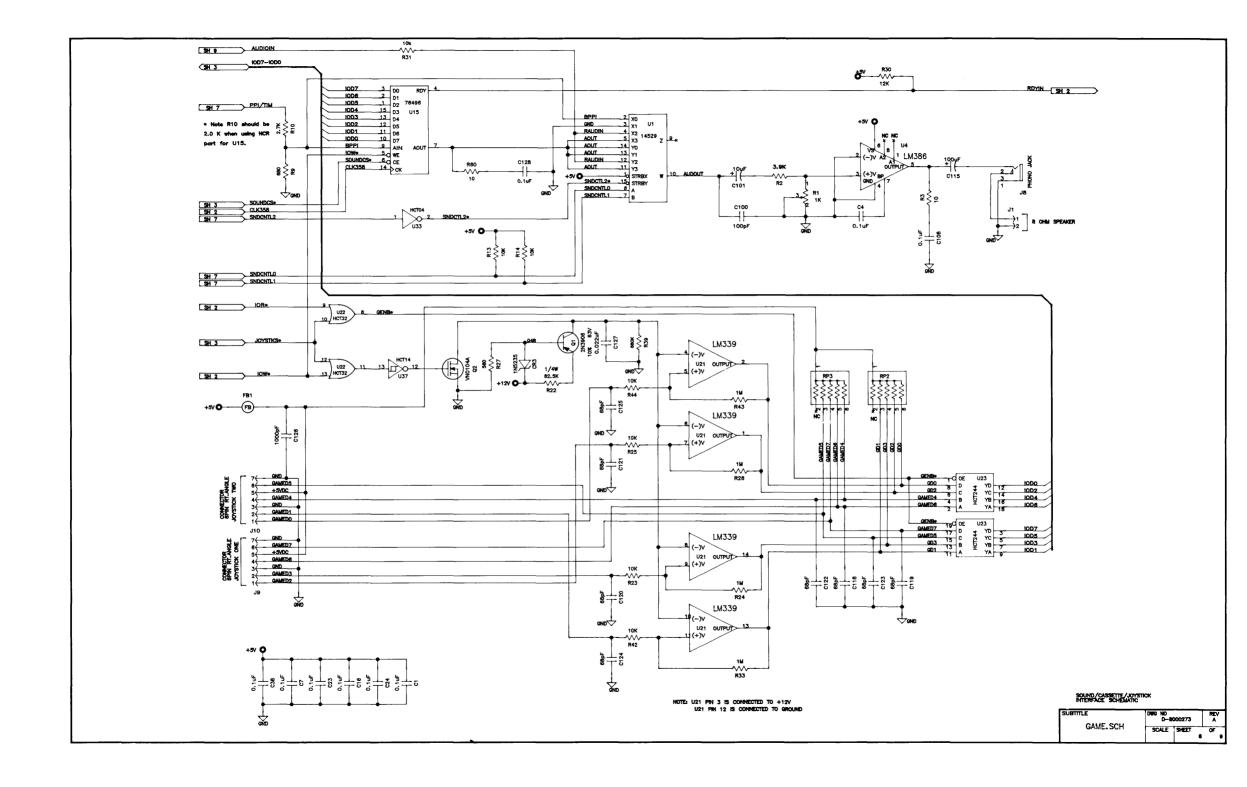

^{**}Note: U8, U40, C8, C40, R11 & R12 Are Blank

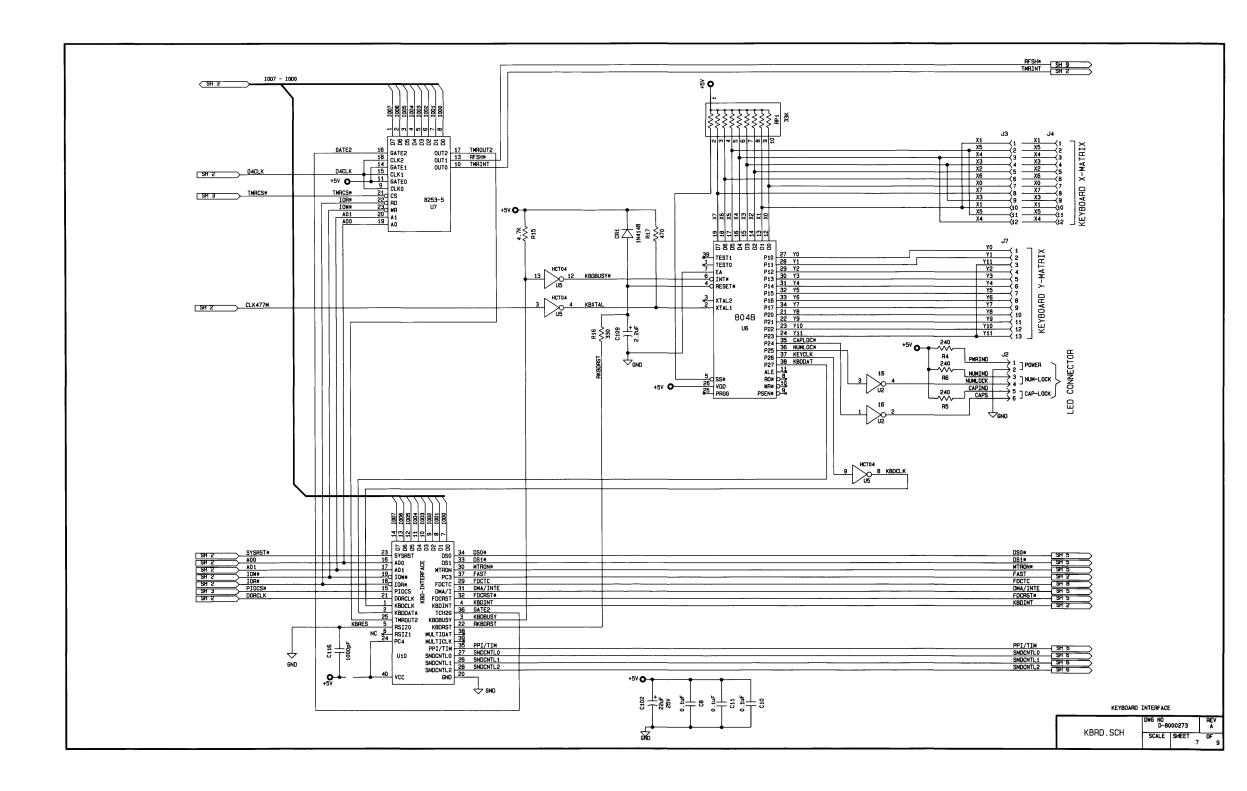

Main Logic T1000 EX Board Main Assembly _______ Description Number Tandy 1000 EX Sub Assy. 8859000 Jumper Plugs 8519098 Jumper Plugs U38040048 IC PLS153 IC 8048 8040048 U6 IC 8253-5 บ7 8040253 U9 IC 8259A 8040259 IC Keyboard I/F Ul0 8075069 IC 8088 (8 MHz) CPU U14 8041088 IC 76496 8040496 U15 IC CPU Support (Lt. Blue) 8075306 U16 IC 128K ROM 8040328 U17 U27 IC FDC UPD765 8040272 U28 IC Big Blue 8040684 U28 IC Big Blue 8040684 U29 IC FDC 9216 8040216 U32 IC Custom Printer Array 8041087 U41-48 IC 64K X 4 Dram 150NS 8040464

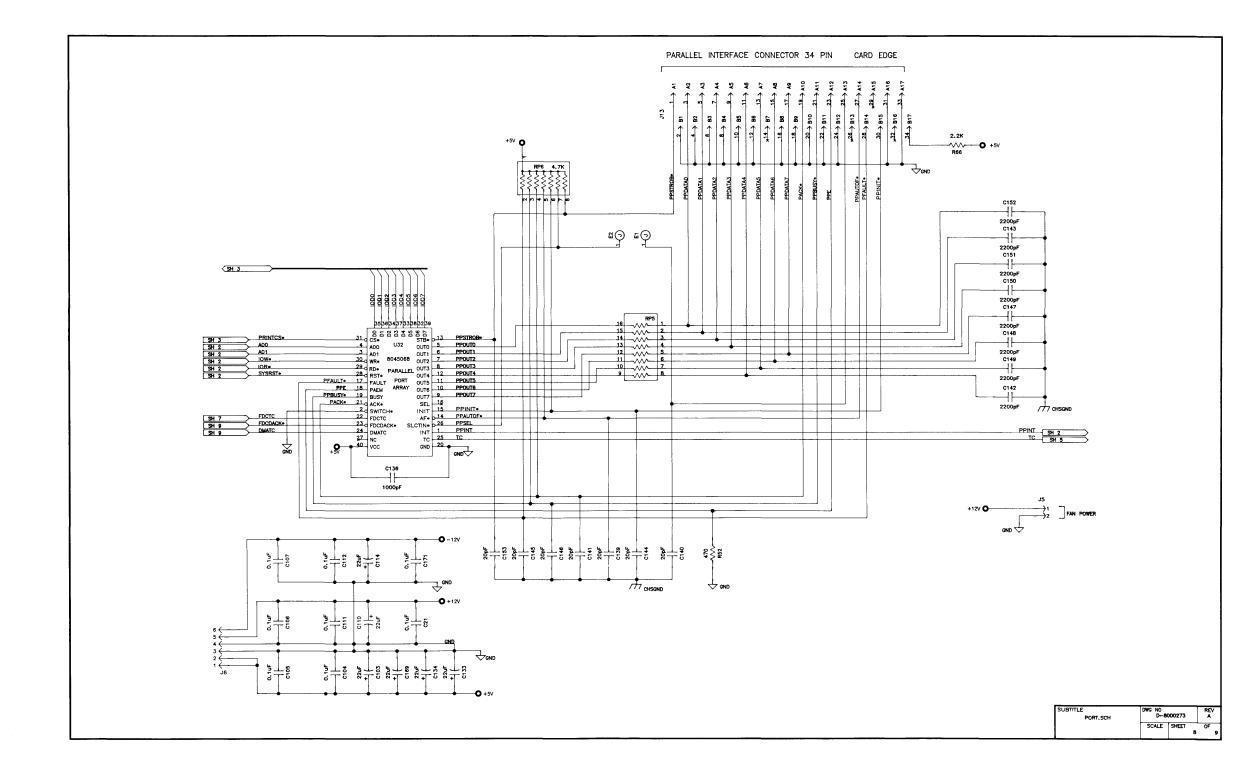

Main Logic Schematic Cuts, Jumpers and Additional Parts

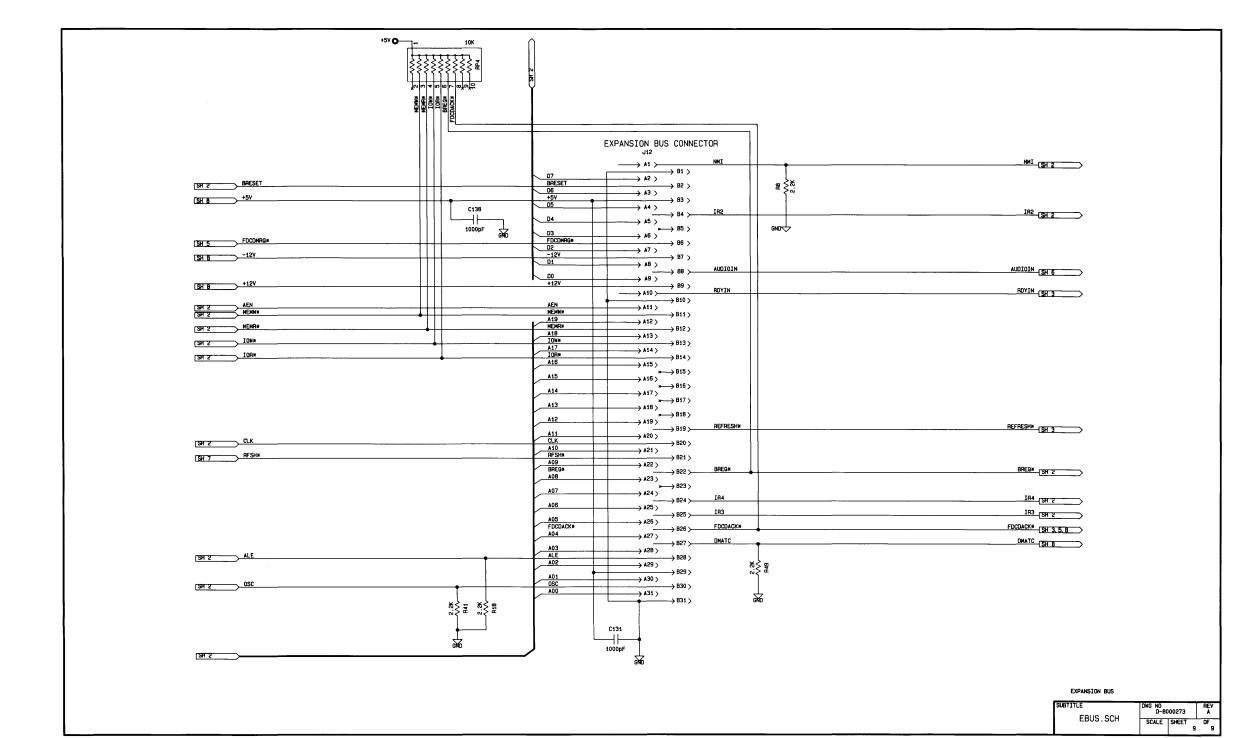

- .0033 μ f capacitor added to Ul6 (Timing Controller Chip) between Pin 15 (PWR) and Pin 26 (GND).
- 33 pf capacitor added between R47 (side connected to Video Controller Chip) and ground.
- 1000 pf capacitor (P/N 8302104) added in parallel with C28.
- $47\ \mathrm{pf}$ capacitor added between R39 (in parallel with side connected to Bus) and ground.
- $47\ \mathrm{pf}$ capacitor added between R40 (side connected to Bus) and ground.

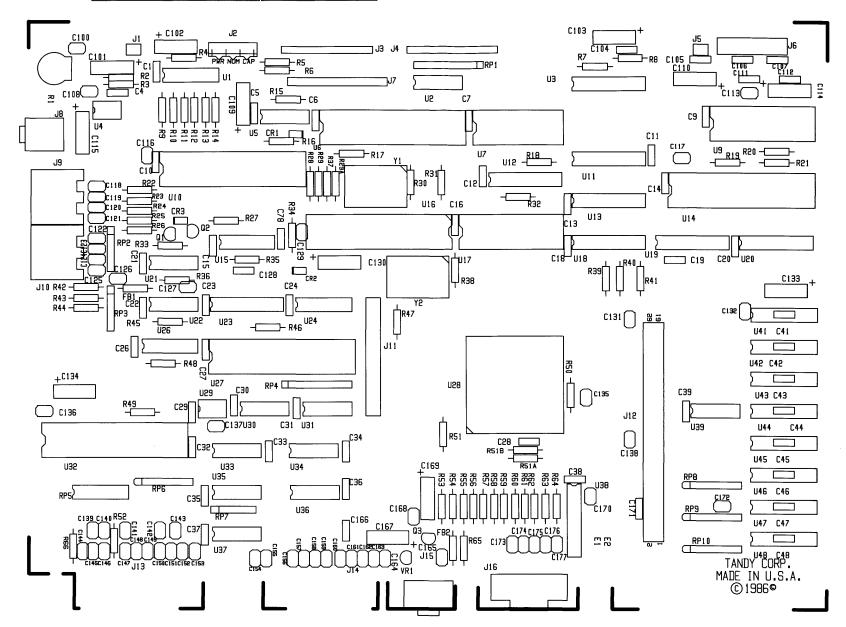

Cut Pin 12 of IC MC14529 from the PCB and then Short (solder) Pin 12 to Pin 13.

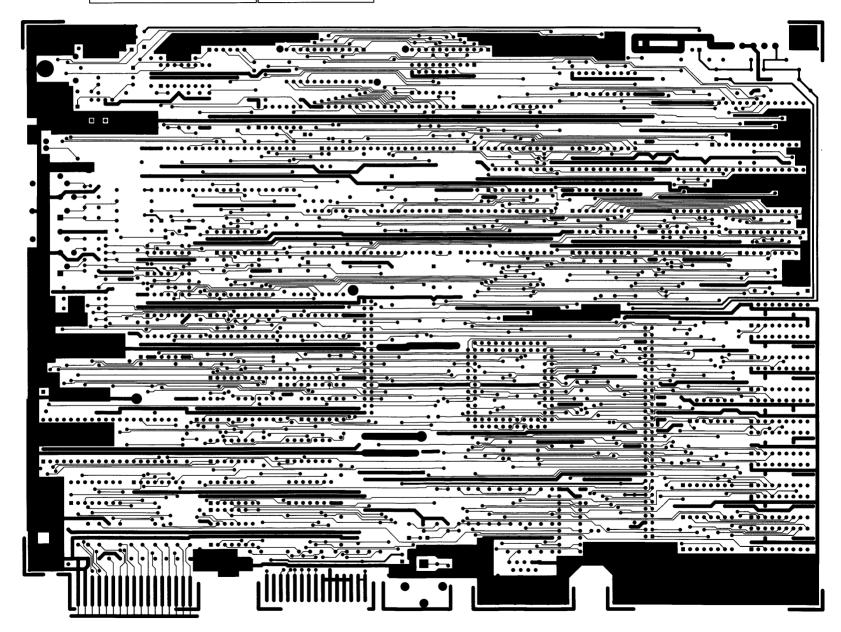


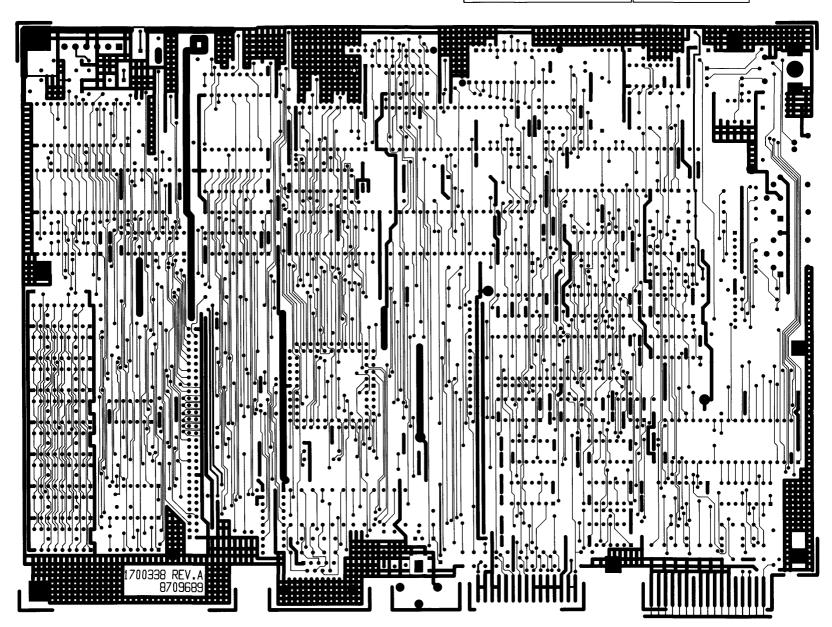








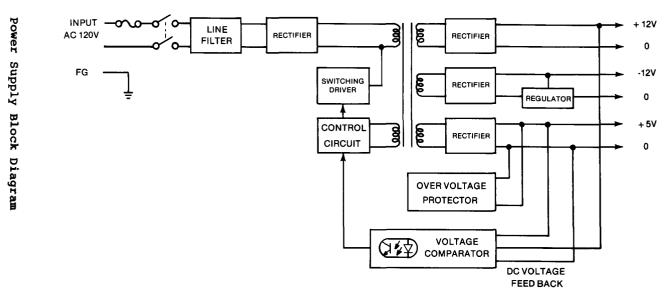



TANDY SYSTEMS DESIGN FILMWORK	FAB. SPEC. TSD-C262-0
PROJECT NO. 620 DATE 5/30/86 TITLE MAIN LOGIC BD. DWG NO. 1700338 REV A	C/S SILKSCREEN
PART NO. 970-9689 DESIGN GRID: x=.020 y=.021	
DESIGNER • VH GM DD	

TANDY SYSTEMS DESIGN FILMWORK	FAB. SPEC. TSD-C262-0
PROJECT NO. 620 DATE 5/30/86 TITLE MAIN LOGIC BD. DNG. NO. 1700338 REV. A PART NO. 870-9689 DESIGN GRID x - 020 y - 021 DESIGNER VH GH DD	LAYER 1 COMPONENT SIDE

TANDY SYSTEMS DESIGN FILMWORK	FAB. SPEC. TSD-C262-0
PROJECT NO.: 620 DATE: 5/30/86 TITLE: MAIN LOGIC 8D. BWG. NO.: 1780338 REV. A PART NO.: 870-9689 DESIGN GRID: x=.820 y821 DESIGNER: VH GH BD INSP	LAYER 2 SOLDER SIDE

1000 EX POWER SUPPLIES (SINGLE AND DUAL INPUT)


1000 EX 28 Watt Single Input Power Supply

1000 EX 28 WATT SINGLE INPUT POWER SUPPLY CONTENTS

OPERATING CHARACTERISTICS BLOCK DIAGRAM THEORY OF OPERATION TROUBLESHOOTING PARTS LIST PCB ART SCHEMATIC

OPERATING CHARACTERISTICS

		MINIMUM	TYPICAL	MUMIXAM	UNITS
Operating Voltage	Range	90	120	135	VAC
Line Frequency		47	50/60	63	Ηz
Output Voltage					
Vol		4.85	5.00	5.15	V
Vo2		11.40	12.00	12.60	ν
Vo3		-13.20	-12.00	-10.80	V
Output Loads					
Iol		1.25	-	3.0	A
Io2		0.1	-	1.25	A
103		0	-	0.1	A
Over Current Prot	ection				
Current Limit	ICLI	-	-	6.0	A
	ICL2	-	-	2.5	A
	ICL3	-	-	1.0	A
Over Voltage Prot	ection				
Crowbar		5.8	-	6.8	v
Output Noise					
Vol		-	-	50	mV P-P
Vo2		-	-	100	mV P-P
Vo3		-	-	150	mV P-P
Efficiency		65	69	-	%
Holdup Time					
Full Load at N	ominal Line	16	-	-	mSec
Insulation Resist	ance				
Input to Outpu	t	7	1000	-	M ohms
Input to Groun	đ	7	1000	-	M ohms
Isolation					
Input to Ground	ı	1.7	-	-	KVDC

Theory of Operation

AC Input Circuit

This circuit is composed of an AC Power Switch, a fuse, a line filter, and an inrush current limiting circuit and rectifying smoothing circuit. The inrush current limiting circuit controls the charging current to electrolytic capacitors when power is ON. The line filter reduces noise that leaks from the power source to the AC line or that returns from the unit to the power souce; it satisfies the specifications of noise regulations.

Control Circuit & Power Converter Circuit

This circuit is a self oscillation switching system, generally called an R.C.C. (Ringing Choke Converter). The R.C.C. circuit does not fix the oscillating frequency. Whenever input voltage is high or the load becomes light, the oscillating frequency will be high.

The current through R2 supplies transistor Ql's base, then Ql turns ON. When transistor Ql is On, the Ql current excites the transformer Tl and voltage rises in the bias coil of Tl(5-6) which leads transistor Ql positive bias, then transistor Ql turns ON.

When transistor Q1 turns ON, collector current charges the energy to primary inductance of transformer T1 (1-3). Increasing the collector current of transistor Q1 to the point of:

I > I .hfe C = B

Then, transistor Ql immediately turns OFF. In a moment, transformer Tl will have negative voltage which will be supplied to the secondary circuit through a rectifier. A Short Circuit Protector is provided to protect transistor Ql from excess amounts of current when the secondary circuit becomes shorted. When transistor Q2 detects the voltage drop at R8, the collector of Q2 shorts the base and emitter of Q1. Then Ql stops working so that the circuit protects Ql from over current.

The over current protector in the -12V line is provided by the three terminal positive voltage regulator ICl (built-in current fold back protection), which protects Ql against excessive current from the -12V line.

5V Output Voltage Detecting Circuit

The circuit detects the change of output load current comparing with the output voltage and AC line input voltage, which feeds back to the control circuit through a photo coupler to keep the output voltage stable. The Photo coupler isolates the primary and secondary circuits.

Over-Voltage Protection

When the +5 output voltage rises, between 5.8V to 6.8V, the +12V circuit will be shorted by the Thyristor SCR1 under the control of zener diode D12, and then the supply shuts down because of the over current protection. In the above case, correct the cause of the failure, and reinput the power. The overvoltage protection circuit will reset automatically under good conditions.

Troubleshooting

Equipment for Test Set-Up

*Isolation Transformer(minimum of 500 VA rating)

CAUTION

Dangerously high voltages are present in this power supply. For the safety of the individual doing the testing, please use an isolation transformer. The 500 VA rating is needed to keep the AC waveform from being clipped off at the peaks. These power supplies have peak charging capacitors and draw full power at the peak of the AC waveform.

- *0-140V Variable Transformer (Variac) Used to vary input voltage. Recommend 10 amp, 1.4 KVA rating, minimum.
- *Voltmeter- Need to measure DC voltages to 50 VDC and AC voltages to 200 VAC. Recommend two digital multimeters.
- *Oscilloscope- Need x 10 and x 100 probes.
- *Load board with connectors- See Table 1 for values of loads required. The entry on the table for Safe Load Power is the minimum power ratings for the load resistors used.

NOTE: Because of its design, this power supply must have a load present or damaging oscillations may result. Never test the power supply without a suitable load.

*Ohmmeter

Set-Up Procedure

Set-up as shown in Figure 1. You will want to monitor the input voltage and the output voltage of the regulated bus, which is the +5 output, with DVM's. Also monitor the +5 output with the oscilloscope using 500 mv/div sensitivity. The DVM monitoring the +5 output can also be used to check the other outputs. See text of "No output" section for the test points within the power supply.

Visual Inspection

Check power supply for any broken, burned, or obviously damaged components. Visually check fuse, if any question check with ohmmeter.

Start-Up

Load power supply with minimum load as specified in Table 1. Bring up power slowly with the Variable Transformer while monitoring the +5 output with the oscilloscope and DVM. Supply should start with approximately 40-60 VAC applied, and should regulate when 90 VAC is reached. If output has reached 5 volts, do a performance test on operating characteristics, if there is no output, refer to "No output" section.

ОИТРИТ	MINLOAD	LOAD R	SAFE LOAD POWER	MAX LOAD	LOAD R	SAFE LOAD POWER
+ 5 V	1.25 A	4 ohms	20 W	3.0 A	1.7 ohms	50 W
+ 12 V	0.1 A	120 ohms	3 W	1.2 A	10 ohms	30 W
-12 V	0	0	0	0.1 A	120 ohms	3 W

Table 1 Load Board Values (28 watt)

Figure 1 Test Setup

No Output

1. Check fuse:

If fuse is blown, replace it but do not apply power until the cause of the failure is found.

2. Preliminary Check on Major Primary Components:

Check diode bridge (D1), power transistor (Q1), and drive transistor (Q2), for shorted junctions. If any component is found shorted, replace it.

3. Preliminary Check on Major Secondary Components:

Using an ohmmeter from an output that is common to each output and with output loads disconnected, check for shorted rectifiers or capacitors.

4. Check Over Voltage Protector:

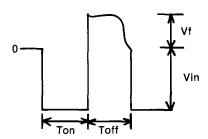
Read the output voltage with a DVM at the +5 output terminals by increasing the input voltage from OV. Output voltage will appear at some input voltage and then go down to OV again. Check the Diode D12 transistor (Q3) or Thyristor (SCR1).

Check Ol Waveforms:

Read waveform of Q1 Collector with oscilloscope at x 100 probe.

Figure 2 is Ql Collector normal waveform.

Figure 3 is Ql Base normal waveform.


Figure 4 is the waveforms when shorted circuits of the secondary parts as listed in Table 2. Check listed parts according to the waveform.

	Collector Waveforms	Shorted Secondary Components
i	Figure 4	D6, D9, D10, D11, C9, C10, C11, C12, C13 C14, C15, IC1, SCR1

Table 2. List of Shorted Circuits

Waveforms

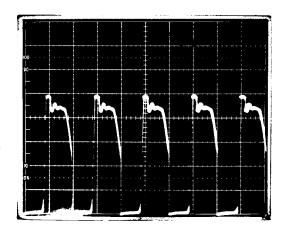
Power Converter Circuit

Collector Voltage Waveform

Collector Current Waveform

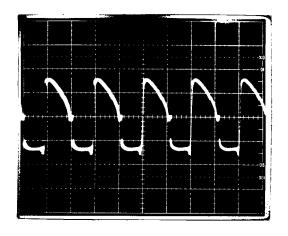
The input and output voltage are represented by the following equations:

$Vo = n \times Vf$

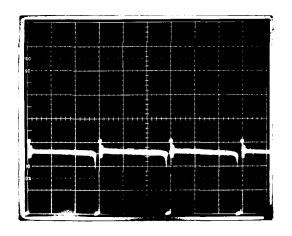

Vo : Output voltage

n : Turn ratio of the transformer Tl
Vf : Collector Voltage at turn-off time

$Vin \times Ton = Vf \times Toff$


Vin : Input voltage

Ton : Turn-on time of transistor Toff: Turn-off time of transistor


50V/DIV 5µs/DIV

Ql Collector Waveforms (Input 90 VAC Minimum Load)

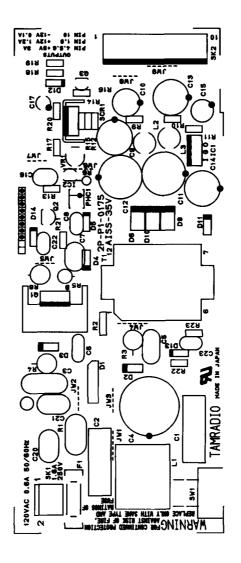
0.5V/DIV 5µs/DIV

Ql Base Waveforms (Input 90 VAC Minimum Load)

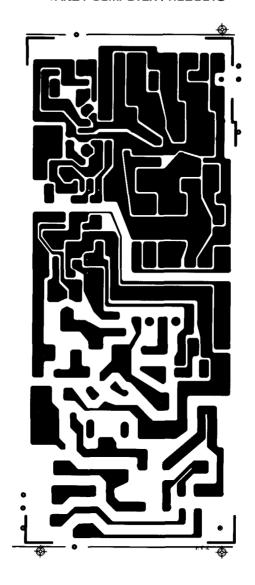
50V/DIV 5µs/DIV

Ql Collector Waveforms -Shorted Secondary Components (Input 90 VAC)

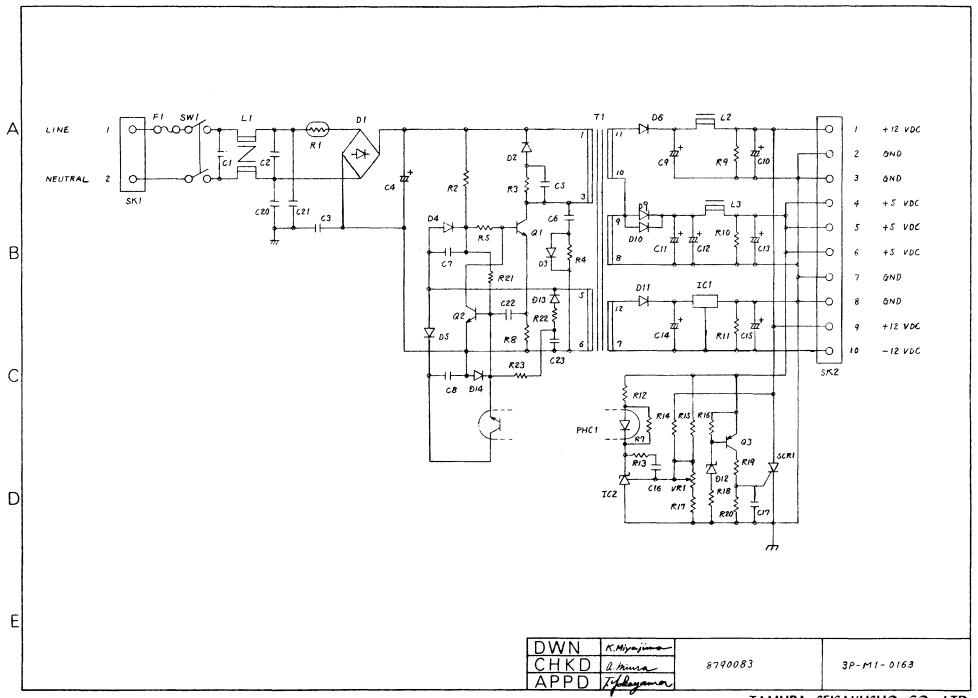
PARTS LIST FOR SWITCHING POWER SUPPLY UNIT PART NO. 8790083


Symbol	Description			QTY	RS Part No.	Mfr's Part No.
CAPACITORS C1/2	; Film	0.luF	250VAC	2		XE-104
c3	Ceramic	10000pF	400VAC	1		DE7150FZ103PVA1-KC or CS17-F2GA103ZYAS
C4	Electrolytic	220uF	200WV	1		CEFTW2D221 or 200LPSS220
C 5	Film	0.0luF	400VAC	1		CF921L2J103K or MDD22J103K
c 6	Ceramic	680pF	2KV	1		DE1010R681K2K or CK45-B3DD681KYAR
C7/16	Film	0.luF	50V	2		50F2D104K or AMZF104K50V
C8/22/23	Film	0.047uF	50 V	3		50F2D473K or AMZF473K50V
09/13	Electrolytic	1000uF	16WV	2		CEUSM1C102
ClO	Electrolytic	470uF	16WV	1		CEUSM1C471
C11/12	Electrolytic	4700uF	lowv	2		CEUSM1A472
C14	Electrolytic	330uF	35WV	1		CEUSM1V331
C15	Electrolytic	100uF	25WV	1		CEUSM1E101
C17	Electrolytic	luF	50WV	1		CEUSM1H010
C20/21	Ceramic	2200pF	400VAC	2		DE7100F222MVA1-KC or CS13-E2GA222MYAS
CONNECTORS	3					
SK1	Connector, 2	conductors	Input	1		5277-02A
SK2	Connector, 10	conductor	s Ou t put	1		5273-10A
DIODES						
Dl	Silicon, Stack	400V	lA	1		DBA10E or SIVBA40
D2/3/4	Silicon	600 v	1A	3		FI-06 or V19G
D5/13	Silicon	100V	200mA	2		DS446 or 15954
D 6	Silicon	40V	3A	1		RK44 or D3S4M
D9/10	Silicon	35V	3A	2		RK43 or D3S3M
D12	Silicon, Zener	e 6 v	400mW	1		HZ6B2

_____ TANDY COMPUTER PRODUCTS -----

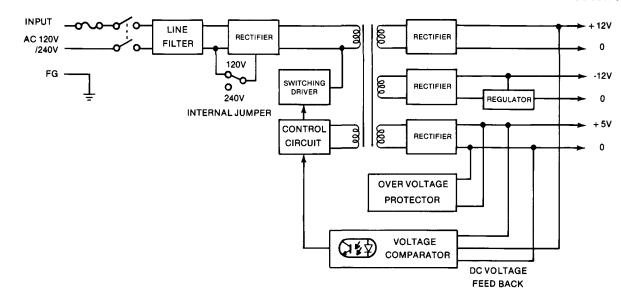

Pise	Symbol FUSE	Descri	lption		QTY	RS Part No.	Mfr's Part No.
HEATSINK		Fuse	250V	1.6A	1		MT4 1.6A250V
Heatsink, for Q1		Fuse Clip			2		P#5722113
Heatsink, for Q1							
Hastink, for SCR 1	HEATSINK						
INDUCTORS L1	HS1	Heatsink, for)1		1		4P-D2-0170
Choke Coil	HS2	Heatsink, for S	SCR1		1		4P-D2-0122
Choke Coil							
Company Comp	INDUCTORS						
12/3	Ll	Choke Coil	8mH		1		
INTEGRATED CIRCUITS IC1	12/2	Chaire Cadl	£U		2		•
IC1	ر /عد	Choke Coll	Jun		٤		10-9177
IC1	TNTEGRATE	CTRCUTTS					
Or NJM78M12 IC2 IC, Regulator 37V 150mA 1 TLA31CLPB or uA431AWC PHOTO COUPLERS PHC1 Photo Coupler 35V 50mA 1 TLP521-1 or PC817 PRINTED CIRCUIT BOARD PC1 Printed Circuit Board XPC 1 2P-P1-0175 RESISTORS R1 Thermister 8 1.6A 1 115-080-42308 or 8D-11 or NTH9D1601A R2 Carbon 100K 1/2W 1 RD50P100KohmeJ or RD50S100KohmsJ R3 Metal-oxide 27 2W 1 RSF2B270hmsJ or ERC2ANJ270 R4 Metal-oxide 100 2W 1 RSF2B1000chmsJ or ERC2ANJ101 R5 Metal-oxide 56 2W 1 RSF2B1000chmsJ or ERC2ANJ101 R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ	_		12V	0.5A	1		L78M12
PHOTO COUPLERS PHC1	101	10, 1100-1111		0.5	_		
PHOTO COUPLERS PHC1	IC2	IC, Regulator	37V	150mA	1		
PHC1 Photo Coupler 35V 50mA 1 TLP521-1 or PC817 PRINTED CIRCUIT BOARD PC1 Printed Circuit Board XPC 1 2P-P1-0175 RESISTORS R1 Thermister 8 1.6A 1 115-080-42308 or 8D-11 or NTH9D160LA R2 Carbon 100K 1/2W 1 RD50P100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or ERC2ANJ270 R4 Metal-oxide 27 2W 1 RSF2B27ohmsJ or ERC2ANJ270 R4 Metal-oxide 100 2W 1 RSF2B100ohmsJ or ERC2ANJ101 R5 Metal-oxide 56 2W 1 RSF2B100ohmsJ or ERC2ANJ101 R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ							or un4)1AWC
PHC1 Photo Coupler 35V 50mA 1 TLP521-1 or PC817 PRINTED CIRCUIT BOARD PC1 Printed Circuit Board XPC 1 2P-P1-0175 RESISTORS R1 Thermister 8 1.6A 1 115-080-42308 or 8D-11 or NTH9D160LA R2 Carbon 100K 1/2W 1 RD50P100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or ERC2ANJ270 R4 Metal-oxide 27 2W 1 RSF2B27ohmsJ or ERC2ANJ270 R4 Metal-oxide 100 2W 1 RSF2B100ohmsJ or ERC2ANJ101 R5 Metal-oxide 56 2W 1 RSF2B100ohmsJ or ERC2ANJ101 R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ	TION OTOUR	व्यक्त १०					
PRINTED CIRCUIT BOARD PC1			35V	50mA	1		TI.P521_1
PC1	11101	Thoto coupier	٠,رر	، س ار	-		
PC1							
RESISTORS R1 Thermister 8 1.6A 1 115-080-42308 or 8D-11 or NTH9D1601A R2 Carbon 100K 1/2W 1 RD50P100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or ERGZANJ270 R4 Metal-oxide 100 2W 1 RSF2B27ohmsJ or ERGZANJ270 R5 Metal-oxide 56 2W 1 RSF2B100ohmsJ or ERGZANJ101 R5 Metal-oxide 56 2W 1 RSF2B56ohmsJ or ERGZANJ560 (Adjust 27-82ohms/270-820) R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ	PRINTED C	RCUIT BOARD					
RESISTORS R1 Thermister 8 1.6A 1 115-080-42308 or 8D-11 or NTH9D160LA R2 Carbon 100K 1/2W 1 RD50P100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or ERG2ANJ270 R4 Metal-oxide 100 2W 1 RSF2B27ohmsJ or ERG2ANJ270 R5 Metal-oxide 56 2W 1 RSF2B100ohmsJ or ERG2ANJ101 R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ	PCl		Board	XPC	1		2P-P1-0175
R1		103-0					
R1	PERTETPE						
or 8D-11 or NTH9D160LA R2 Carbon 100K 1/2W 1 RD50P100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or RFSEB270hmsJ or ERG2ANJ270 R4 Metal-oxide 100 2W 1 RSF2B1000hmsJ or ERG2ANJ101 R5 Metal-oxide 56 2W 1 RSF2B1000hmsJ or ERG2ANJ101 R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ		Thermister	8	1.6A	1		115-080-42308
R2 Carbon 100K 1/2W 1 RD50P100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or RD50S100KohmsJ or ERGZANJ270 R4 Metal-oxide 100 2W 1 RSF2B27ohmsJ or ERGZANJ270 R5 Metal-oxide 56 2W 1 RSF2B100ohmsJ or ERGZANJ101 R5 Metal-oxide 56 2W 1 RSF2B56ohmsJ or ERGZANJ560 (Adjust 27-82ohms/270-820) R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ	112	111011111111111111111111111111111111111	Ü	1,011	-		or 8D-11
R7				- /	_		•
or ERG2ANJ270 R4 Metal-oxide 100 2W 1 RSF2B100ohmsJ or ERG2ANJ101 R5 Metal-oxide 56 2W 1 RSF2B56ohmsJ or ERG2ANJ560 (Adjust 27-82ohms/270-820) R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ	H2	Carbon	100K	1/2W	T		
R4 Metal-oxide 100 2W 1 RSF2B100ohmsJ or ERG2ANJ101 R5 Metal-oxide 56 2W 1 RSF2B56ohmsJ or ERG2ANJ560 (27-82) or ERG2ANJ560 (Adjust 27-82ohms/270-820) R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ	R3	Metal-oxide	27	2W	1		RSF2B27ohmsJ
or ERG2ANJ101 R5 Metal-oxide 56 2W 1 RSF2B56ohmsJ or ERG2ANJ560 (Adjust 27-82ohms/270-820) R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ							·
R5 Metal-oxide 56 2W 1 RSF2B56ohmsJ or ERG2ANJ560 (Adjust 27-82ohms/270-820) R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ	R4	Metal-oxide	100	2W	1		
(27-82) or ERG2ANJ560 (Adjust 27-820hms/270-820) R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmsJ	R5	Metal-oxide	56	2W	3		
R6/9/10/11/16/20 Carbon 1K 1/4W 6 RD25P1KohmeJ					•		or ERG2ANJ560
Carbon 1K 1/4W 6 RD25P1KohmsJ	D/ /0/ /	/2 (/00					(Adjust 27-820hms/270-820)
	и6/9/10/11		1K	1/4W	6		RD25P1KohmsJ
				•			or RD25S1KohmsJ

_ TANDY COMPUTER PRODUCTS --


Symbol	Descr	iption		QTY	RS Part No.	Mfr's Part No.
R8	Carbon	0.68	3W	1		SPR3B
R12/22	Carbon	100	1/4W	2		RD25P100ohmsJ or RD25S100ohmsJ
R13/17	Carbon	2.2K	1/4W	2		RD25P2.2KohmsJ or RD25S2.2KohmsJ
R14	Carbon	27K	1/4W	1		RD25P27KohmsJ or RD25S27KohmsJ
R15	Carbon	6.8K	1/4W	1		RD25P6.8KohmsJ or RD25S6.8KohmsJ
R18	Carbon	39	1/4W	1		RD25P39ohmsJ or RD25S39ohmsJ
R19	Carbon	120	1/4W	1		RD25P12OohmsJ or RD25S12OohmsJ
R21	Carbon (220	470 0-680)	1/4W	1		RD25P470ohmsJ or RD25S470ohmsJ (Adjust 220-680ohms)
R23	Carbon (22	330 0 – 680)	1/4W	1		RD25P33OohmsJ or RD25S33OohmsJ (Adjust 220-68Oohms)
VRI	Variable Resis	tor 2K	0.5W	1		V6EK-PVC(1S)202B or H0615-222B
SWITCH						
SW1	Power :	125V 6A/2	250V 4A	1		1852.5103
TRANSFORM	⊈R					
Tl	Transformer			1		TO-4349
TRANSISTO	RS					
ðī	Transistor	400V	7 A	1		2SC3039 or 2SC3832 or 2SC2827
Q2	Transistor	50 V	2A	1		2SD1207 or 2SC2655
Q 3	Transistor	50V	0.2A	1		2SA1318 or 2SA1015
SCRI	Thyristor	400V	5A	1		DRS5E or 5P4M or CR6AM8

Power Supply PCB - Silkscreen

Power Supply PCB - Component Side


1000 EX 28 Watt Dual Input Power Supply

1000 EX 28 WATT DUAL INPUT POWER SUPPLY CONTENTS

OPERATING CHARACTERISTICS BLOCK DIAGRAM THEORY OF OPERATION TROUBLESHOOTING PARTS LIST PCB ART SCHEMATIC

OPERATING CHARACTERISTICS

		MINIMUM	TYPICAL	MUMIXAM	UNITS
Operating Voltage	Range	90 198	120 240	135 264	VAC
Line Frequency		47	50/60	63	Hz
Output Voltages					
Vol		4.85	5.00	5.15	V
Vo2		11.40	12.00	12.60	V
Vo3		-13.20	-12.00	-10.80	V
Output Loads					
Iol		1.25		3.0	A
Io2		0.1	-	1.25	A
103		0	-	0.1	A
Over Current Prot	ection				
Current Limit	ICL1	-	-	6.0	A
	ICL2	-	-	2.5	A
	ICL3	-	-	1.0	A
Over Voltage Prot	ection				
Crowbar		5.8	-	6.8	γ
Output Noise			v.		
Vol		_	-	50	mV P-P
Vo2		-	-	100	mV P-P
Vo3		-	-	150	mV P-P
Efficiency		65	69	-	%
Holdup Time					
Full Load at No	ominal Line	16	-	-	mSec
Insulation Resista	ance				
Input to Outpu	t	7	1000	-	M ohms
Input to Ground	i	7	1000	-	M ohms
Isolation					
Input to Ground	i	1.25	-	-	KVAC
Input to Output	t	3.75	-	-	KVAC

POWER SUPPLY BLOCK DIAGRAM

Theory of Operation

AC Input Circuit

This circuit is composed of an AC Power Switch, a fuse, a line filter, and an inrush current limiting circuit and rectifying smoothing circuit. The inrush current limiting circuit controls the charging current to electrolytic capacitors when power is ON. The line filter reduces noise that leaks from the power source to the AC line or that returns from the unit to the power souce; it satisfies the specifications of noise regulations.

Control Circuit & Power Converter Circuit

This circuit is a self oscillation switching system, generally called an R.C.C. (Ringing Choke Converter). The R.C.C. circuit does not fix the oscillating frequency. Whenever input voltage is high or the load becomes light, the oscillating frequency will be high.

The current through R3 supplies transistor Q1's base, then Q1 turns ON. When transistor Q1 is On, the Q1 current excites the transformer T1 and voltage rises in the bias coil of T1(5-6) which leads transistor Q1 positive bias, then transistor Q1 turns ON.

When transistor Ql turns ON, collector current charges the energy to primary inductance of transformer Tl (1-3). Increasing the collector current of transistor Ql to the point of:

I > I .hfe C = B

Then, transistor Ql immediately turns OFF. In a moment, transformer Tl will have negative voltage which will be supplied to the secondary circuit through a rectifier. A Short Circuit Protector is provided to protect transistor Ql from excess amounts of current when the secondary circuit becomes shorted. When transistor Q2 detects the voltage drop at R8, the collector of Q2 shorts the base and emitter of Q1. Then Q1 stops working so that the circuit protects Q1 from over current.

The over current protector in the -12V line is provided by the three terminal positive voltage regulator ICl (built-in current fold back protection), which protects Ql against excessive current from the -12V line.

5V Output Voltage Detecting Circuit

The circuit detects the change of output load current compared with the output voltage and AC line input voltage, which feeds back to the control circuit through a photo coupler to keep the output voltage stable. The Photo coupler isolates the primary and secondary circuits.

Over-Voltage Protection

When the +5 output voltage rises, between 5.8V to 6.8V, the +12V circuit will be shorted by the Thyristor SCRl under the control of zener diode D14, and then the supply shuts down because of the over current protection. In the above case, correct the cause of the failure, and reinput the power. The overvoltage protection circuit will reset automatically under good conditions.

Troubleshooting

Equipment for Test Set-Up

*Isolation Transformer (minimum of 500 VA rating)

CAUTTON

Dangerously high voltages are present in this power supply. For the safety of the individual doing the testing, please use an isolation transformer. The 500 VA rating is needed to keep the AC waveform from being clipped off at the peaks. These power supplies have peak charging capacitors and draw full power at the peak of the AC waveform.

- *0-280V Variable Transformer (Variac) Used to vary input voltage. Recommend 5 amp, 1.4 KVA rating, minimum.
- *Voltmeter- Need to measure DC voltages to 50 VDC and AC voltages to 300 VAC. Recommend two digital multimeters.
- *Oscilloscope- Need x 10 and x 100 probes.
- *Load board with connectors- See Table 1 for values of loads required. The entry on the table for Safe Load Power is the minimum power ratings for the load resistors used.

NOTE: Because of its design, this power supply must have a load present or damaging oscillations may result. Never test the power supply without a suitable load.

*Ohmmeter

Set-Up Procedure

Set-up as shown in Figure 1. You will want to monitor the input voltage and the output voltage of the regulated bus, which is the +5 output, with DVM's. Also monitor the +5 output with the oscilloscope using 500 mv/div sensitivity. The DVM monitoring the +5 output can also be used to check the other outputs. See text of "No output" section for the test points within the power supply.

Table LOAD BOARD VALUES (28watt)

OUTPUT	MINLOAD	LOAD R	SAFE LOAD POWER	MAX LOAD	LOAD R	SAFE LOAD POWER
+ 5 V	1.25 A	4 ohms	20 W	3.0 A	1.7 ohms	50 W
+ 12 V	0.1 A	120 ohms	3 W	1.2 A	10 ohms	30 W
-12 V	0	0	0	0.1 A	120 ohms	3 W

Table 1 Load Board Values (28 watt)

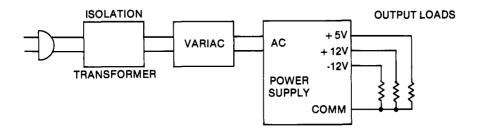


Figure 1 Test Setup

Visual Inspection

Check power supply for any broken, burned, or obviously damaged components. Visually check fuse, if any question check with ohmmeter.

Start-Up

Load power supply with minimum load as specified in Table 1. Check the voltage selector jumper and don't apply over voltage. Bring up power slowly with the Variable Transformer while monitoring the +5 output with the oscilloscope and DVM. Supply should start with approximately 40-60/80-120 VAC applied, and should regulate when 90/180 VAC is reached. If output has reached 5 volts, do a performance test on operating characteristics, if there is no output, refer to "No output" section.

No Output

1. Check fuse:

If fuse is blown, replace it but do not apply power until the cause of the failure is found.

2. Preliminary Check on Major Primary Components:

Check diode bridge (D1), power transistor (Q1), and drive transistor (Q2), for shorted junctions. If any component is found shorted, replace it.

3. Preliminary Check on Major Secondary Components:

Using an ohmmeter from an output that is common to each output and with output loads disconnected, check for shorted rectifiers or capacitors.

4. Check Over Voltage Protector:

Read the output voltage with a DVM at the +5 output terminals by increasing the input voltage from OV. Output voltage will appear at some input voltage and then go down to OV again. Check the Diode D14 transistor (Q3) or Thyristor (SCR1).

5. Check Ol Waveforms:

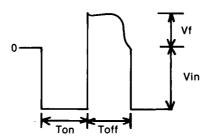
Read waveform of Ql Collector with oscilloscope at $x\ 100$ probe.

Figure 2 is Ql Collector normal waveform.

Figure 3 is Ql Base normal waveform.

Figure 4 is the waveforms when shorted circuits of the secondary parts as listed in Table 2. Check listed parts according to the waveform.

Collector Waveforms	Shorted Secondary Components
Figure 4	D9, D11, D12, C12, C13, C14, C15, C16 SCR1


Table 2. List of Shorted Circuits

6. Check Resistor (R13).

If R12 is open, check D13, C17 and IC1.

Waveforms

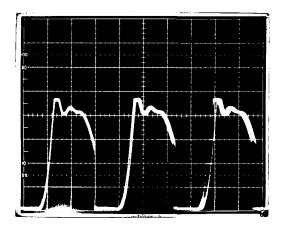
Power Converter Circuit

Collector Voltage Waveform

Collector Current Waveform

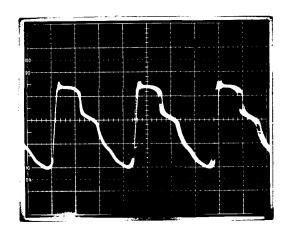
The input and output voltage are represented by the following equations:

$Vo = n \times Vf$

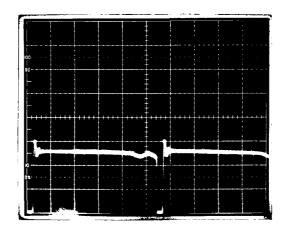

Vo : Output voltage

n : Turn ratio of the transformer Tl
Vf : Collector Voltage at turn-off time

$Vin \times Ton = Vf \times Toff$


Vin : Input voltage

Ton: Turn-on time of transistor Toff: Turn-off time of transistor


100V/DIV 5μs/DIV

Ql Collector Waveforms (Input 90 VAC Minimum Load)

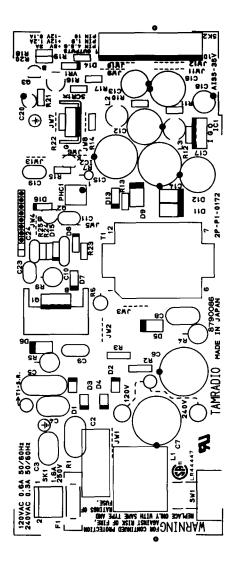
0.5V/DIV 5µs/DIV

Ql Base Waveforms (Input 90 VAC Minimum Load)

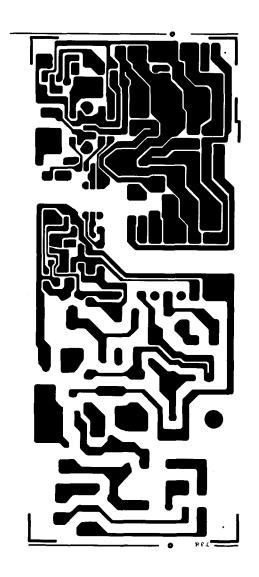
100V/DIV 20µs/DIV

Q1 Collector Waveforms -Shorted Secondary Components (Input 90 VAC)

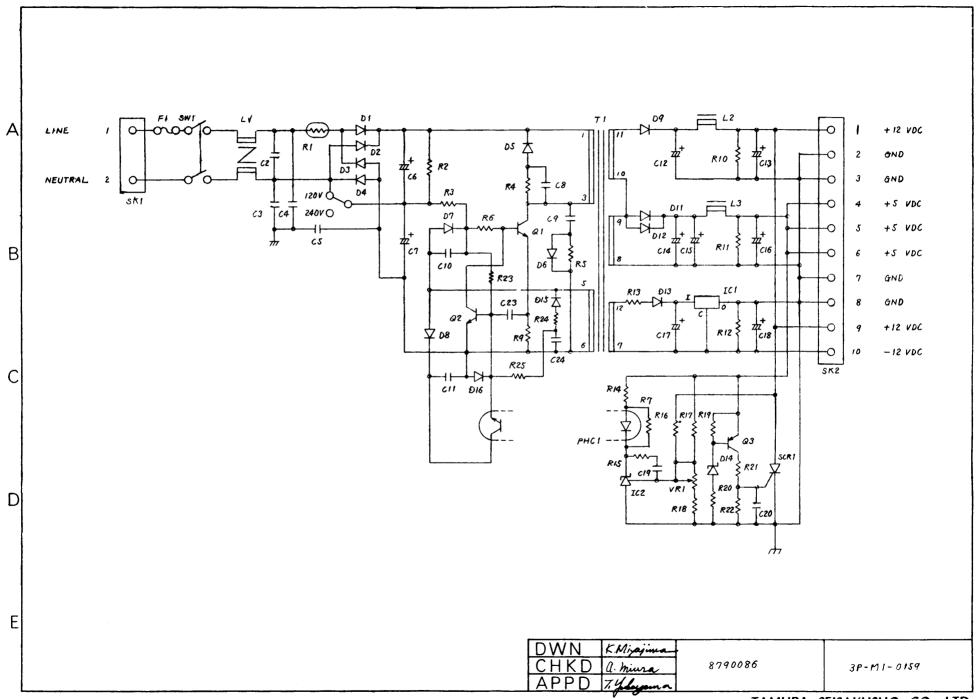
... TANDY COMPUTER PRODUCTS -


PARTS LIST FOR SWITCHING POWER SUPPLY UNIT PART NO. 8790086

Symbol CAPACITORS		ription		QTY	RS Part No.	Mfr's Part No.
C2	Film	0.22uF	250VAC	1		XE-224
c3/4	Ceramic	2200pF	400VAC	2		DE7100F222MVA1-KC or CS13-E2GA222MYAS
C5	Ceramic	10000pF	400VAC	1		DE7150FZ103PVA1-KC or CS17-F2GA103ZYAS
c 6/7	Electrolytic	100uF	200WV	2		CEUSM2D101
C8	Film	0.0luF	630 v	1		CF921L2J103K or MDD22J103
C9	Ceramic	680pF	2KV	1		DE1010R681K2K or CK45-B3DD681KYAR
C10	Film (0.1	0.22uF -0.22uF)	50 V	1		50F2D224K or AMZF224K50V (Adjust 104K-224K)
C11/23/24	Film	0.047uF	50V	3		50F2D473K or AMZF473K50V
C12/16	Electrolytic	1000uF	16WV	2		CEUSM1C102
C1 3	Electrolytic	470uF	16WV	1		CEUSM1C471
C14/15	Electrolytic	4700uF	lowv	2		CEUSM1A472
C17	Electrolytic	330uF	35WV	1		CEUSM1V331
C18	Electrolytic	100uF	25WV	1		CEUSM1E101
C19	Film	0.luF	50V	1		50F2D104K or AMZF104K50V
C 20	Electrolytic	luF	50WV	1		CEUSM1H010
CONNECTORS						
SKl	Connector, 2		-	1		5277-02A
SK2	Connector, 10		-			5273-10A
	Pin Terminal,	•	Selector	2		RT-01N-2.3A
	Jumping Conne	ctor		1		4P-M3-0017
DIODES						
D1/2/3/4	Silicon	600 v	1A	4		DSF10G or EMO1A
D5/ 6	Silicon	800V	lA	2		FI-08 or RU2B
D7/13	Silicon	600V	1A	2		FI-06 or V19G
D8/15	Silicon	100V	200 mA	2		DS44C or 18954
D9	Silicon	35V	3A	1		D3S4M or RK44


TANDY COMPUTER PRODUCTS

Symbol Dll/12	<u>Descri</u> Silicon	ption 35V	3A	<u>QTY</u> 2	RS Part No.	Mfr's Part No.
,						or RK43
D14	Silicon, Zener	6 v	400mW	1		HZ6B2
FUSE						
Fl	Fuse	250V	1.6A	1		MT4 1.6A250V
	Fuse Clip			2		P#5722113
HEATSINK						
HS1	Heatsink, for Q	u		1		4P-D2-0170
HS2	Heatsink, for S	CRI		1		4P-D2-0122
INDUCTORS						
Ll	Choke Coil	40mH		1		TO-9301
L2/3	Choke Coil	5 u H		2		TO-9177
INTEGRATEI	CIRCUITS					
ICI	IC, Regulator	12V	0.5A	1		L78M12 or NJM78M12
IC2	IC, Regulator	37V	150mA	1		TL431CLPB or uA431AWC
PHOTO COUL	PLERS					
PHC1	Photo Coupler	55V	60mA	1		TLP732 or PClll
						or PCIII
PRINTED C	IRCUIT BOARD					
PCl	Printed Circuit	t Board	XPC	1		2P-P1-0172
	105°C					
RESISTORS						
R1	Thermister	16	1.2A	1		16D-13
14	11101410101					or 117-160-45202 or NTH13D160LA
R2/3	Carbon	100K	1/4W	2		RD25P100KohmsJ or RD25S100KohmsJ
R4	Metal-oxide	100K	2W	1		RSF2B100KohmsJ
R5	Metal-oxide	100	2W	1		RSF2B100ohmsJ
R6	Metal-oxide	47	2W	1		RSF2B47ohmsJ
R9	Carbon	1.2	3W	1		SPR3B1.2ohmsJ
R7/10/11/	12/19/22 Carbon	1K	1/4W	6		RD25P1KohmsJ or RD25S1KohmsJ


Symbol	Descr	iption		QTY	RS Part No.	Mfr's Part No.
R14	Carbon	100	1/4W	1		RD25P100ohmsJ or RD25S100ohmsJ
R15/18	Carbon	2.2K	1/4W	2	!	RD25P2.2KohmsJ or RD25S2.2KohmsJ
R16	Carbon	27K	1/4W	1		RD25P27KohmsJ or RD25S27KohmsJ
R17	Carbon	6.8K	1/4W	1		RD25P6.8KohmsJ or RD25S6.8KohmsJ
R20	Carbon	39	1/4W	1		RD25P39ohmsJ or RD25S39ohmsJ
R21	Carbon	120	1/4W	1		RD25P12OohmsJ or RD25S12OohmsJ
R23	Carbon (330	470 0-680)	1/4W	1		RD25P470ohmsJ or RD25S470ohmsJ (Adjust 330-680ohms)
R24	Carbon	47	1/4W	1		RD25P47ohmsJ or RD25S47ohmsJ
R25	Carbon (220	330 0 - 330)	1/4W	1		RD25P33OohmsJ or RD25S33OohmsJ (Adjust 220-33Oohms)
R13	Fusing	ı	1/4W	1		RF25SlohmsJ
V R1	Variable Resist	tor 2K	0.5W	1		V6EK-PV(1S)202B or H0615-222B
SWITCH						
SWl	Power 1	125 V 6A/2	250V 4A	1		1852.5103
TRANSFORM	⊈R					
Tl	Transformer			1		то-4338
TRANSISTO	RS					
đ	Transistor	800V	3A	1		2SC3150 or 2SC4042
Q2	Transistor	50 V	2A	1		2SD1207 or 2SC2655
Q 3	Transistor	50 V	0.2A	1		2SA1318 or 2SA1015
SCR1	Thyristor	400V	5A	1		DRASE or SP4M or CR6AM8

Power Supply PCB - Silkscreen

Power Supply PCB - Component Side

KEYBOARD

KEYBOARD CONTENTS

SPECIFICATION	SHEET	1	OF	7
KEYBOARD CIRCUIT	SHEET	5	OF	7
KEYBOARD LAYOUT	SHEET	6	OF	7

							TELEDYNE POST N15183
SCALE SHEET OF			USED ON	NEXT ASSY	DO NOT SCALE DWG		REVISION _ B
8080079 SIZE			, 020		DIM. ARE IN INCHES AND APPLY AFTER PLATE		
	2721/50	APPRATON TO THE AMERICAN			.751 - UP - + .015		
	DATE	APPR N. Farrigh			.251750 - + .008	FINISH	
KEYBOARD	DATE	DESIGN			014 - 250 * + .005 001		
PROJECT 620	DATE	CHECK			ANGLES - 1 10 HOLE DIA. TOLERANCES		
	11/86	DONNA MORSE 4/11/86			TOLERANCE010	MAT'L	
							-

SPECIFICATION

PROJECT 620 NON-ENCODED KEYBOARD MATRIX

SEE SHEET 1A FOR REVISIONS

^{*} REV-A 12-18-85

^{*} REV-B 2-11-86

_ TANDY COMPUTER PRODUCTS -

REV.	DESCRIPTION	DATE	APPD
	PAGE 6: 11/5/85 REMOVED LEDS FROM KEYCAPS; DELETED NOTE OF LEDS; ADDED LED FLANGE & .150 SLOTS; .438 WAS .563; ADDED SH. 2.		
	11/5/85 RELEASED FOR QUOTATION ONLY		
С	12/2/85 ADDED 3RD LED MOUNTING HOLE; MOVED J1 OFF C.L.; 5.81 WAS 5.75; ADDED SPLIT CABLE OPTION AND INCREASED OVERALL WIDTH & MOUNTING DIMS; DWG. WAS #8010010.	4/11/86	
	1/10/86 DELETED SINGLE CABLE OPTION; CHG'D 8 & 12 POSITION CABLES TO 12 & 13 POSITION CABLES, RESPECTIVELY.		
	2/20/86 SPACE BAR WAS CHANGED FROM 9 KEY LENGTH TO 8 KEY LENGTH.		
	4/11/86 ADDED PAGE 7. 4/11/86 REVISED CABLE ASSY., ADDED "J1" & "J2" DETAIL.		
	RELEASED FOR PRODUCTION		ļ
D	REVISED CABLE LENGTHS: 5.84 WAS 6.43, 6.11 WAS 6.70, 6.39 WAS 6.98, 6.63 WAS 7.22.	5/15/86	
		}	
ļ			
			'

SHEET 1A of 7

SPECIFICATION NON-ENCODED KEYBOARD MATRIX

1. Scope This specification covers a keyboard. 2. Electrical Characteristics 2-1 Contact Resistance : 500 Ohm Max.,5Vdc 1mA 2-2 Contact Bounce : 10msec Max. (operating speed at 250 mm/sec) 2-3 Insulation Resistance: 50Mohm Min. at 250Vdc (between switch contacts) 2-4 Dielectric Withstand Voltage : 250 Vdc for 1 minute (betweem PCB pattern and iron panel) 150 Vdc for 1 minute (between switch contacts) 3. Mechanical Characteristics 3-1 Operating Force : 70g+/-25g at full stroke (at center of keycap) 3-2 Plunger Stroke : 0.5 mm ! off region 3.8mm+/-0.5 _____ 3-3 Operating Point : ! on - off 3.8 mm switching 0.5mm Mim. to full stroke region 3-4 Release Point : 0.5 mm ! on region / 0.5mm Min. to free position 4. Operating Life * 4-1 Life: 10Meg (10 million operation) 4-2 Contact Resistance : 500ohm Max. (upto 10 million), 800ohm (after 10 million) 4-3 Contact Bounce : 10msec Max. (after 10Meg)

- * Conditions
 - (1) 5Vdc 1mA (resistive load)
 - (2) Operation Speed: 5 Hz
 - (3) Depression Force: 200g Max. (at center of keyboard)
- 5. Environmental Characteristics
 - 5-1 Operating Temperature Range :

Ø to 55 degrees C

5-2 Storage temperature Range :

-10 to 65 degrees C

5-3 Humidity:

10% to 95% RH (non-condensing), 45 degrees C Max.

5-4 Altitude:

-1000ft to 10000ft

5-5 Vibration :

10 to 55 Hz 1.5mm (along each of the orthogonal axis)

5-6 Shock :

50G, 11 msec 1/2 sine wave, 3 directions each 3 times.

6. Safety Standards

Keyboard must meet; UL standard 114

, CSA SPEC: C22.2 NO.0-M1982

, CSA SPEC: C22.2 No.154-M1983

Detailed material specification will be determinded at the approval time.

- 7. Keycaps
- 7-1 Keycaps Configuration :

Keycaps must be detachable. Keycaps are preferred to look exactly the same as they are shown on.D-size drawing NO. 8080079.

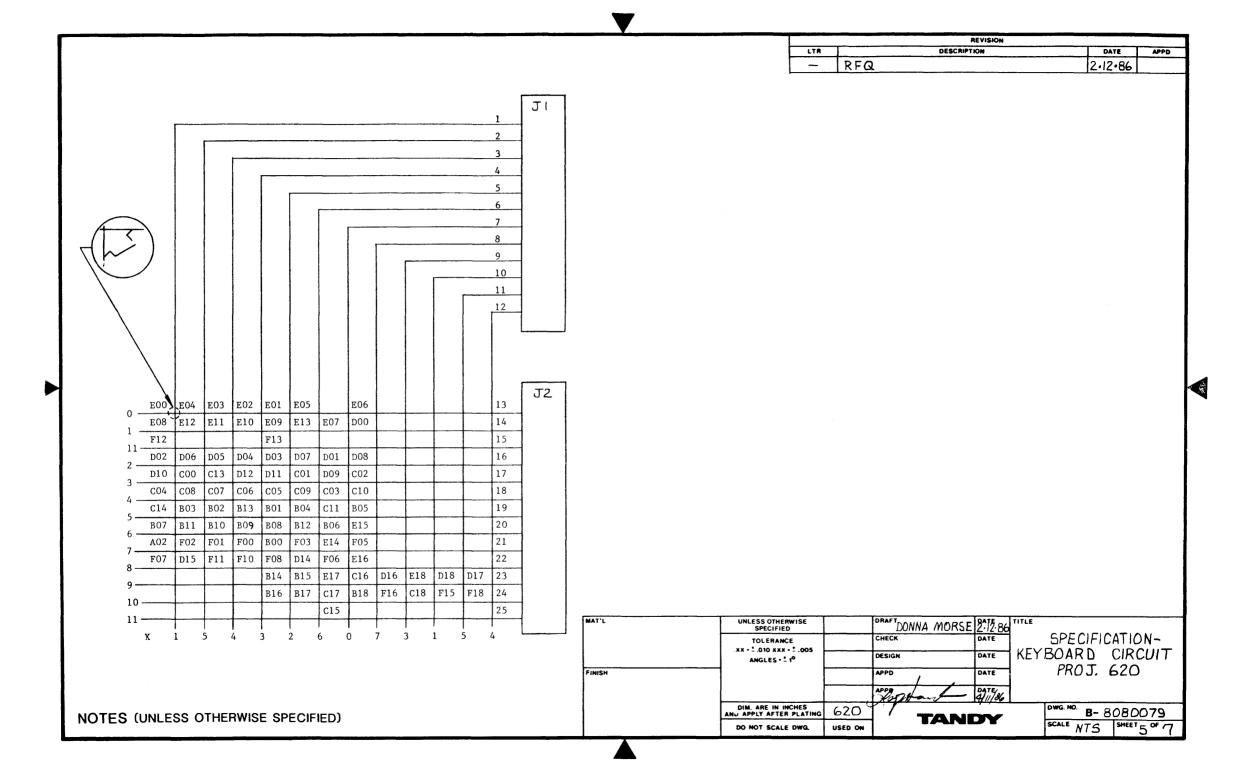
7-2 Keycaps Color :

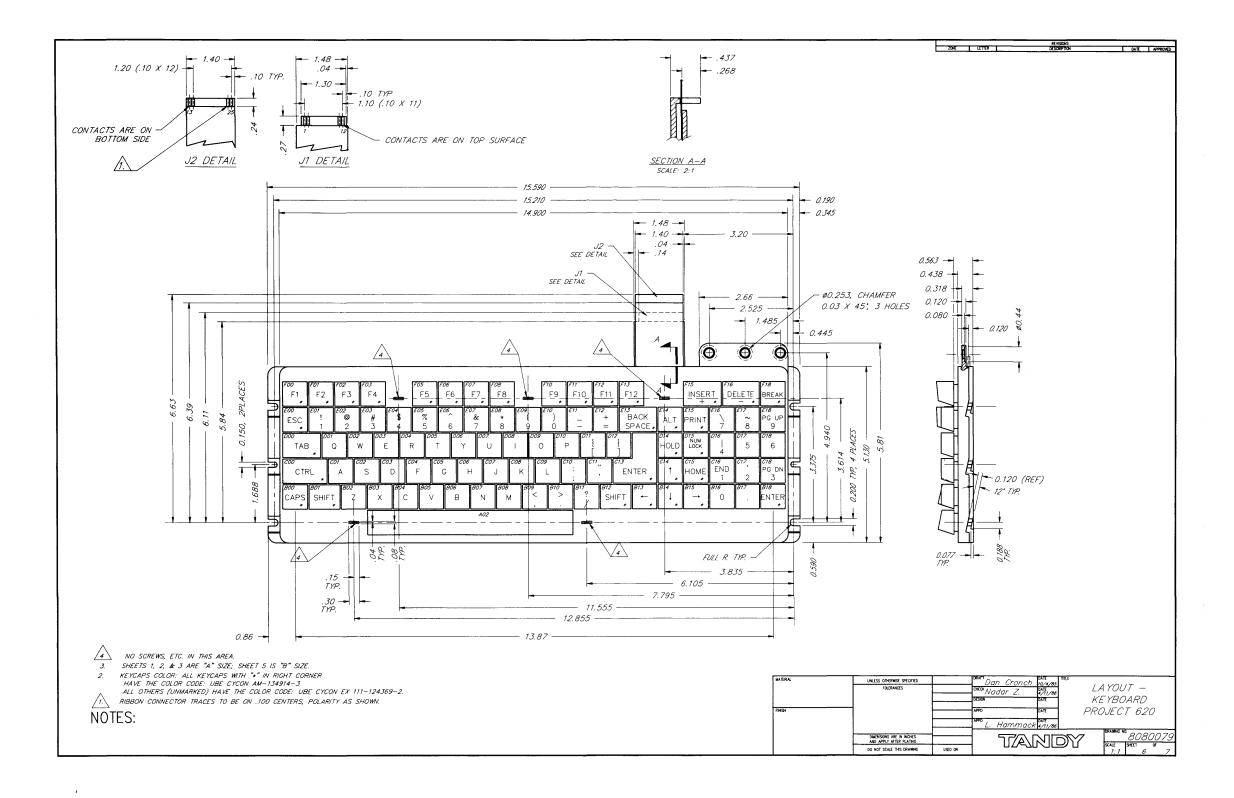
Keycaps colors are specified on the D-size drawing NO.8080079

TANDY COMPUTER PRODUCTS

7-3 Legends :

Legends must be in black and are printed flat on the keycaps as they appear on the D-size drawing. Two shot molding or sublimation printing is preferred.


8. Drawings


8-1 Mechanical Specifications & Keytop Arrangement:

D-8080079 Sheets 6 and 7 of 7

8-2 Circuit Specification :

B-8080079 Sheet 5 of 7

MEMORY PLUS

MEMORY PLUS

INTRODUCTION	1
BLOCK DIAGRAM	
FIMING DIAGRAM	
PCB ART.	
PARTS LIST	
SCHEMATIC	Ŭ

· · · · · · · · · · · · · · · · · · ·	TANDY CO	IMPUTER PRO	IDUCT8	
	Memory PLUS	Expansion	Adapter	
	nemory ruot	Zapanozon	Mapoor	

Introduction

The major functional element of the Memory PLUS Expansion Adapter is the DMA/ Memory Controller chip. A block diagram for this chip is shown in Figure 1.

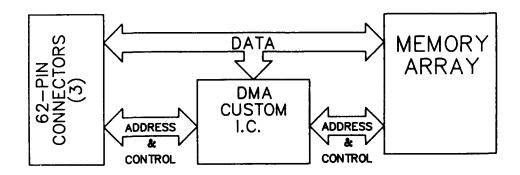


Figure 1. Memory PLUS Expansion Adapter Block Diagram

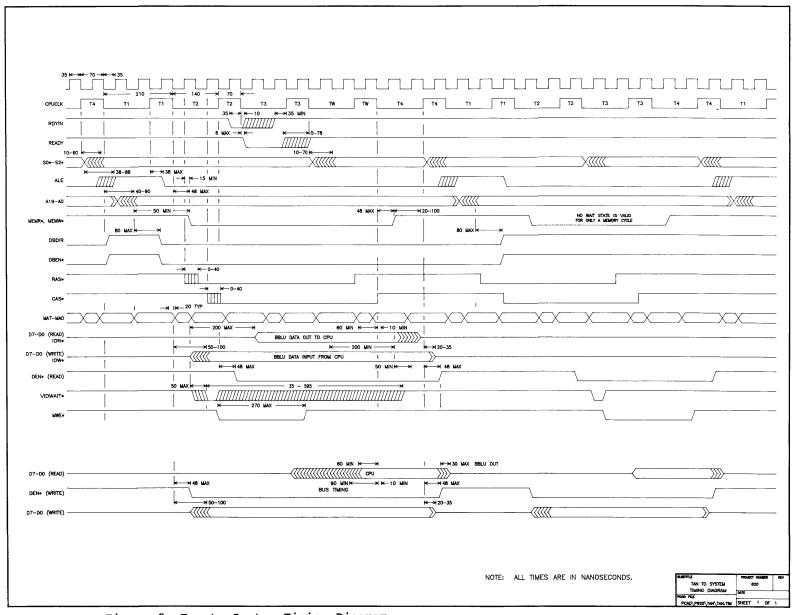
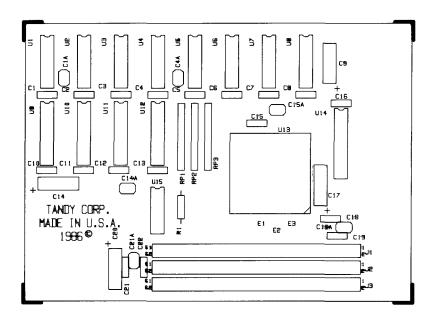
Jumper Settings

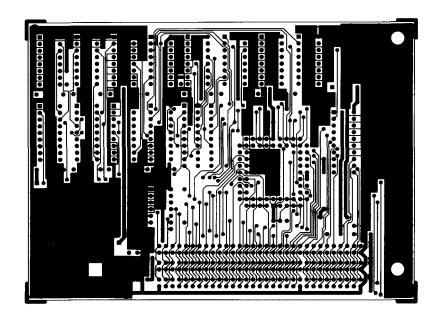
Pins El and E2 -- if the board is going to be installed in the Must Be computer with only 128K of RAM on the Memory Jumpered Together PLUS Expansion Adapter.

Pins E2 and E3 -- if the board is going to be installed in the Must Be computer with the additional 256K of RAM on the Memory PLUS Expansion Adapter (for a total of 384K of RAM).

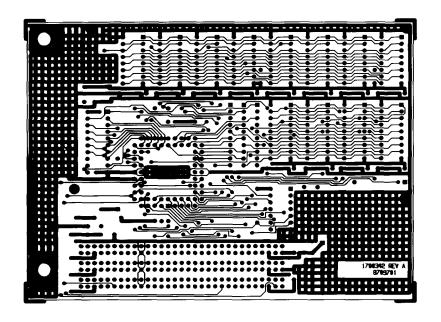
Theory of Operation

The custom DMA/ Memory Controller chip is composed of the equivalent of an 8237A-5 Direct Memory Access chip and a small amount of additional logic to complete the DMA function. In addition, this chip provides timing (see Figure 2.) and refresh addresses to the system memory. In the Memory PLUS Expansion Adapter, this base memory is 128K and may be expanded to 384K of memory.


Figure 2. Tan to System Timing Diagram

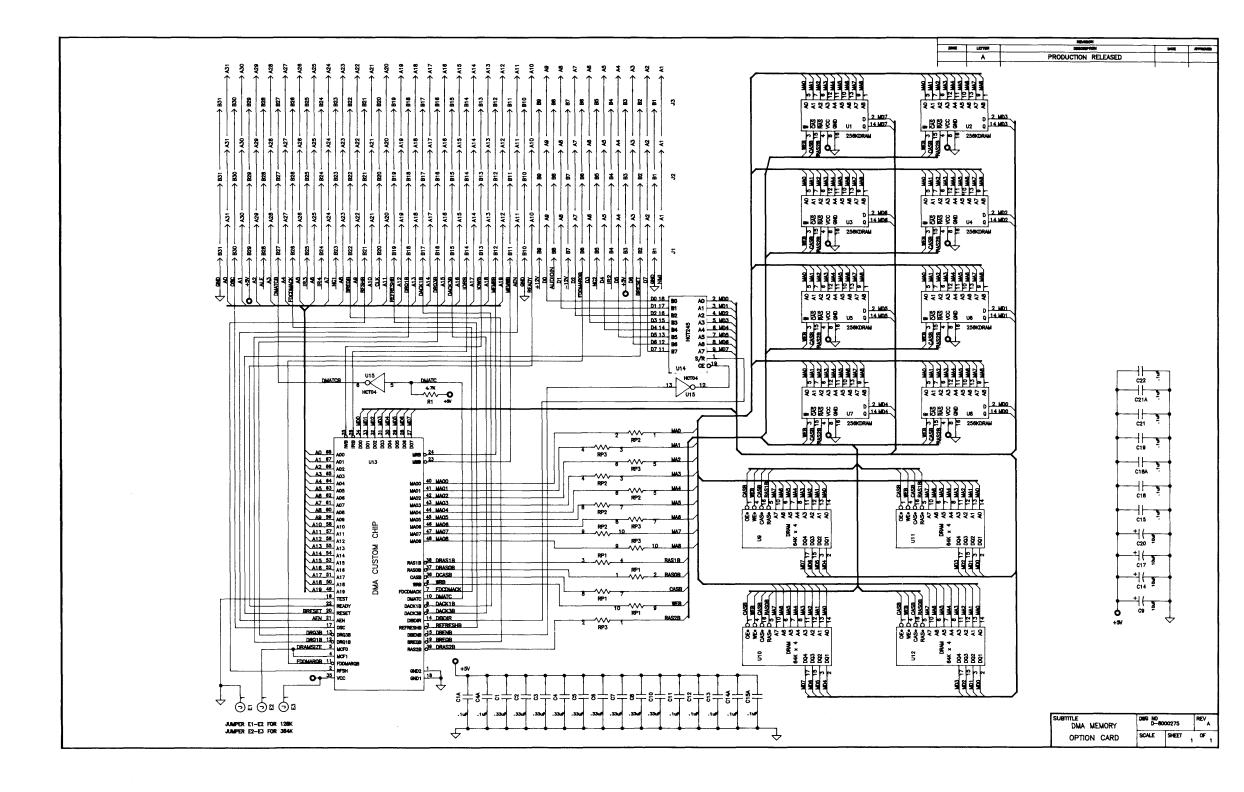
TANDY SYSTEMS DESIGN FILMWORK	FAB. SPEC. TSB-C262-0
PROJECT NO. BIA DATE 6/9/86	
TITLE MEMORY OPTION PCB	C/S SILKSCREEN
PART NO. 9709701	
DESIGN GRID: x=.025 y=.025	
DESIGNER VH DD	
1100	ı
ØC.	


Memory PLUS Expansion Adapter - Silkscreen

TANDY SYSTEMS DESIGN FILMWORK	FAB. SPEC. TSD-C262-0
PROJECT NO. • 804 DATE • 6/9/86	
TITLE: MEMORY OPTION PCB)
DWG. NO. : 1700342 REV. A	
PART NO. : 8709701	LAYER 1 COMPONENT SIDE
DESIGN GRID: x = .025 y = .025	
DESIGNER: VH DD	
INSP	
/ 0.	
<i>γ</i> , του Ευρών Ευ	

Memory PLUS Expansion Adapter - Component Side

R 2 SOLDER SIDE
F



Memory PLUS Expansion Adapter - Solder Side

TANDY COMPUTER PRODUCTS

Memory PLUS Expansion Adapter Parts List

Symbol	Description	Number	
Tl000 EX Memory	Option PCB (5.75 X 4.1)	8859004	
18A,21A C9,14,17,20	Capacitor.33 UF 50V Mono Ax. Capacitor 1000 PF C. Disk 50V 10% Z5P	8302104	
	Capacitor 10 MF 16V Elect. Ax. Capacitor.1 UF 50V Mono Ax.	8316101 8374104	
E1-3	Staking Pin	8529014	
Jl	Connector w/Shroud (short) .687" HT. 2 X 31	8519290	
J2 Connector, 2 X 31 J3 Connector (tall) 1.370" Ht. 2 X 31 with Shroud	8519257		
		8519312	
Rl	Resistor, 4.7K Ohm, 1/4W, 5%	8207247	
RP1-3	Resistor Pak 33 Ohm 10-Pin 5R SIP	8290057	
U1-8 U1-8 U9-12 U9-12 U13 U13 U14	IC 256K DRAM 150 NS Socket 16-Pin DIP IC 64K X 4 DRAM 150 NS Socket 18-Pin DIP IC DMA Custom Socket 68-Pin Jedec "C" IC 74HCT245 IC 74HCT04	8049008 8509003 8041254 8509006 8075711 8509020 8026245 8026004	
	Jumper Plug	8519098	

TANDY COMPUTER PRODUCTS
Tandy [®] 1000 RS-232 Interface Board

_____ TANDY COMPUTER PRODUCTS —

CONT	ENTS	PAGE	NO.
1/	Introduction	· • • • •	1
2/	Jumper Configuration Domestic International		3
3/	Theory of Operation		8
4/	Troubleshooting		.11
5/	Component Layout Silkscreen Component Side Solder Side		.13
6/	Parts List Domestic International		.17
7/	Schematic		.19
8/	WD8250 Asynchronous Communications Element		

1/ Introduction to RS-232 Interface Board

The RS-232 board is a single-channel asynchronous serial communications board. The heart of the board is the WD8250 Asynchronous Communications Element (ACE), that functions as a serial data input/output interface. It performs serial-to-parallel conversion on data characters received from a peripheral device or a modem and parallel-to-serial conversion on data characters received from the CPU.

Status information reported includes the type and condition of the ACE's transfer operations as well as any error conditions. The WD8250 includes a programmable baud rate generator that allows operation from 50 to 9600 baud. The WD8250 can be software tailored to the user's requirements. It can add and remove start bits, stop bits, and parity bits. It supports 5-,6-,7- or 8-bit characters with 1, 1/2, or 2 stop bits. Diagnostic capabilities provide loopback functions of transmit/receive and input/output signals.

This manual covers both domestic and international RS~232 boards. The main difference between the domestic and international boards is the jumper configuration and the programming of the receiving baud rate. This information is covered in section 2. An international parts list is also included in section 5.

Other features include:

- Full double buffering which eliminates the need for precise synchronization.
- Independent receiver clock input.
- . False start bit detection.
- Line break generation and detection.
- Modem control functions: Clear To Send (CTS), Request To Send (RTS), Data Set Ready (DSR), Data Terminal Ready (DTR), Ring Indicator (RI), and Carrier Detect (CD).

 TANDY COM	IPUTER PRO	DUCTS ——	
			_

2/ Jumper Configuration

Most commercially available terminal or communications programs use the primary addresses. Points E2 and E3 should be jumpered for primary operation. Points E1 and E2 should be jumpered for secondary operation.

International RS-232 Board

The RS-232 serial communications board for the Tandy 1000 has two versions. One board is a domestic version which cannot be altered and is used for domestic operations only. Domestic operations means that the board transmits and receives at the same baud rate. The other board is an international version which can be used as either a domestic board or easily modified to accommodate international operations. International operations means that the board can be programmed to transmit at one baud rate while receiving at another baud rate. This is known to be a common mode of operation in Europe. In order for the board to operate in the international mode, some jumpers on the board will have to be changed. The jumper arrangements for domestic and international operation as well as operation in the primary and secondary address spaces are as follows:

Domestic operation in the primary address (3F8-3FF) - Jumper E2 to E3 $\,$

Jumper E4 to E6

Jumper E7 to E9, E8 and E10 empty

Domestic operation in the secondary address (2F8-2FF) -

Jumper El to E2

Jumper E4 to E6

Jumper E7 to E9, E8 and E10 empty

International operation in the primary address -

Jumper E2 to E3

Jumper E4 to E5

Jumper E7 to E8

Jumper E9 to E10

International operation in the secondary address -

Jumper El to E2

Jumper E4 to E5

Jumper E7 to E8

Jumper E9 to E10

While the board is jumpered to the international mode of operation, the user can select between domestic and international operation. This can be done as follows:

Primary address - 3FC, or secondary address - 2FC, Bit 2. Set low for domestic operation, set high for international operation.

NOTE: This bit is low on power up and reset.

Programming the Baud Rates for International Operation

While the Board is setup for international operation, two baud rate generators will have to be programmed. One for the transmit baud rate and the other for the receive baud rate. The transmit baud rate is supplied from the internal baud rate generator on the 8250 UART and is programmed the same as before with the domestic board. The receive baud rate is supplied from an external baud rate generator and is totally independent from the programming for the internal transmit baud rate generator. This external receive baud rate generator is enabled through address 3FF (primary) or 2FF (secondary). The baud rate generator is then programmed by sending the appropriate bits via the data bus (D0-D3). Refer to the following table for selecting the various baud rates.

Frequency Options

Transı Ad	dre		ive	Baud Rate	Theortical	Actual	Percent	Duty Cycle	
D_		В	A	(16X Clock)	Freq. (kHz)	Freq. (kHz)	Error	8	Divisor
0	0	0	0	50	0.8	0.8		50/50	6336
0	0	0	1	75	1.2	1.2		50/50	4224
0	0	1	0	110	1.76	1.76		50/50	2880
Ō	Ó	1	1	134.5	2.152	2.1523	0.016	50/50	2355
Ō	1	ō	0	150	2.4	2.4		50/50	2112
ŏ	ī	Õ	i	300	4.8	4.8		50/50	1056
ō	1	ĩ	ō	600	9.6	9.6		50/50	528
Ö	ī	ī	ì	1200	19.2	19.2		50/50	264
ì	0	0	0	1800	28.8	28.8		50/50	176
1	0	0	1	2000	32.0	32.081	0.253	50/50	158
1	0	1	0	2400	38.4	38.4		50/50	132
1	0	1	i	3600	57.6	57.6		50/50	88
1	1	0	ρ	4800	76.8	76.8		50/50	66
ī	1	Ō	1	7200	115.2	115.2		50/50	44
ī	1	ī	ō	9600	153.6	153.6		48/52	33
ī	1	ī	1	19,200	307.2	316.8	3.125	50/50	16

Crystal Frequency = 5.0688 MHZ

TANDY COMPL	ITER PRODUCTS	

3/ Theory Of Operation

The user's manual for the TRS-80 RS-232-C Interface (Cat. No. 26-1145) has a general discussion of the EIA RS-232-C Standard. The RS-232 asynchronous communications board has various modes of operation that can be selected by programming the WD8250 ACE. The WD8250 is programmed by selecting the I/O address (3F8 to 3FE primary, and 2FB to 2FE secondary), and writing data out to the board. Address bits AO, AI, and A2 are used to define the modes of operation by selecting the different registers to be programmed or read.

One interrupt is provided to the system from IRQ4 for primary operation, and IRQ3 for secondary operation. This interrupt is active high. Bit 3 of the modem control register must be set high in order to send interrupts to the system. When this bit is high, any interrupts allowed by the interrupt enable register will cause an interrupt.

Refer to Section 8 for the Functional Pin Definitions and Timing Diagrams for the WD8250.

Figure 1 shows the Block Diagram for the RS-232 Adapter.

Figure 2 shows the Functional Pin Definitions for the 82S153 IFL.

Figure 3 shows the IFL equations for the 82S153 IFL.

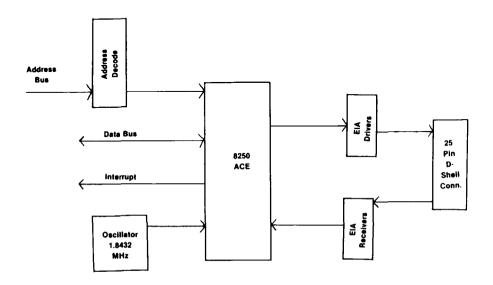


Figure 1. Block Diagram for the RS-232 Adapter.

PIN NUMBER	PIN NAME	SYMBOL	FUNCTION
1	ADDRESS ENABLE	AEN	${\tt DMA}$ cycle when high, CPU cycle when low.
2-8	ADDRESS LINES	A3-A9	These address lines are used for decoding the address space 2F8-2FF (secondary) or 3F8-3FF (primary).
9	SECONDARY INTERRUPT REQUEST	IORQ3	Sends interrupts to the CPU while operating in the secondary address space.
10	GROUND		
11	PRIMARY INTERRUPT REQUEST	IORQ4	Sends interrupts to the CPU while operating in the primary address space.
12	PRIMARY OR SECONDARY UARTS	P or S	An input that determines which address space will be used. Primary (3F8-3FF) when high or secondary (2F8-2FF) when low.
13	UART INTERRUPT	INT	Receives interrupt signal from the 8250 .
14	UART CHIP SELECT	UCS	Enables the 8250 ACE when low.
15	NOT USED		
16	NOT USED		
17	DATA CHIP SELECT	DCS	Enables the data bus buffers when low.
18	NOT USED		
19	NOT USED		
20	vcc		

Figure 2. Functional Pin Definitions for the 82S153 IFL.

INPUTS

PRI_PORT = IOADDRESS 3F8-3FF SEC_PORT = IOADDRESS 2F8-2FF

OUTPUTS

DCS = PRI_PORT AEN P_OR_S + SEC_PORT AEN P_OR_S

IORQ4 = MODEM_INT P_OR_S M_OR_U + UART_INT P_OR_S M_OR_U

IORQ3 = UART_INT P_OR_S M_OR_U + MODEM_INT P_OR_S M_OR_U

UART CS = PRI_PORT AEN P_OR_S + SEC_PORT AEN P_OR_S

Figure 3. IFL Equations for the 82S153 IFL.

4/ Troubleshooting

The RS-232 board can be tested by using the IOTEST program included with the Tandy 1000 diagnostics diskette. The following is an excerpt from the IOTEST reference quide.

Equipment Needed

- 1. Computer: Tandy 1000 or 1200 HD
- 2. RS-232 card
- 3. Loopback connector test fixture in the following configuration:

<u>DB-25</u>	Signal
2-3	TX-RX
4-5	RTS-CTS
6-8-20-22	DTR-DSR-CD-RI

4. Tandy 1000 Diagnostic Diskette

Troubleshooting Hints

. If some of the control functions are bad:

Check the loopback connector. Check the line drivers/receivers for activity. Check the 8250 UART (U2) for any bent pins.

. The BRG fails:

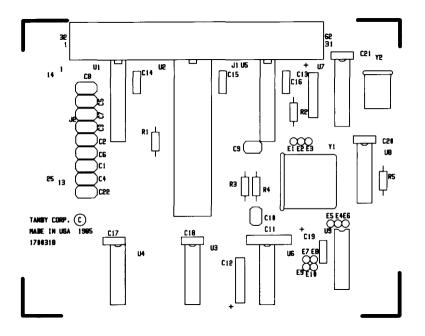
Check for correct configuration of the jumpers. The 8250 UART may be malfunctioning.

. The RX test fails:

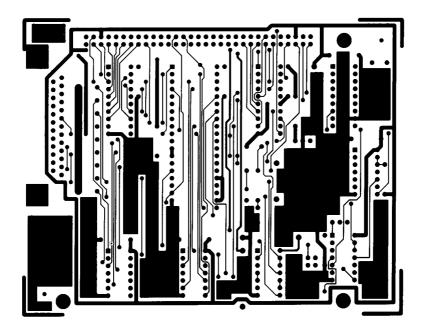
Check for interrupts on the bus. Check the 8250 and jumper configurations.

Break detect fails:

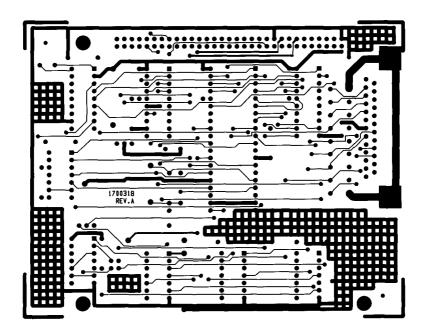
The 8250 UART may be malfunctioning.


RX and Break detect fails:

Check the data path through the loopback connector and the line drivers/receivers. Check the 8250 and jumper configurations.


If the above tests are negative:

Check the 82S153 (U5).
Check the 8250 UART and jumper configurations.
Check the 74LS245 (U1).

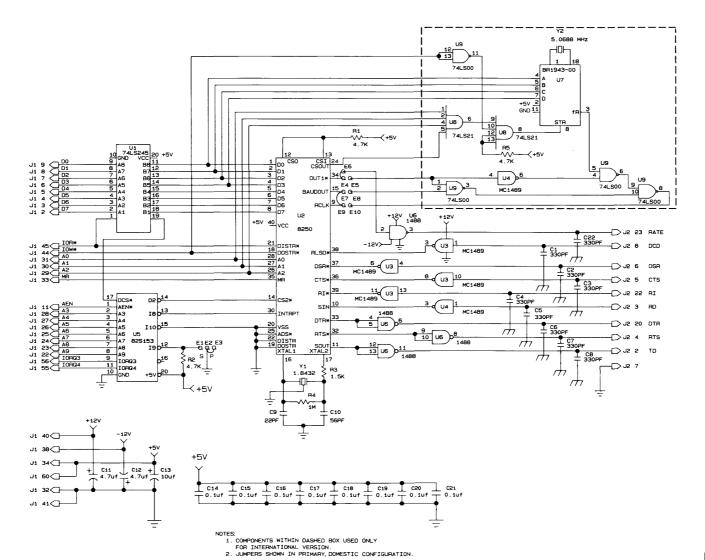

5/ Component Layout

Silkscreen

Component Side

Solder Side

 TANDY COMPUTER P	RODUCTS	

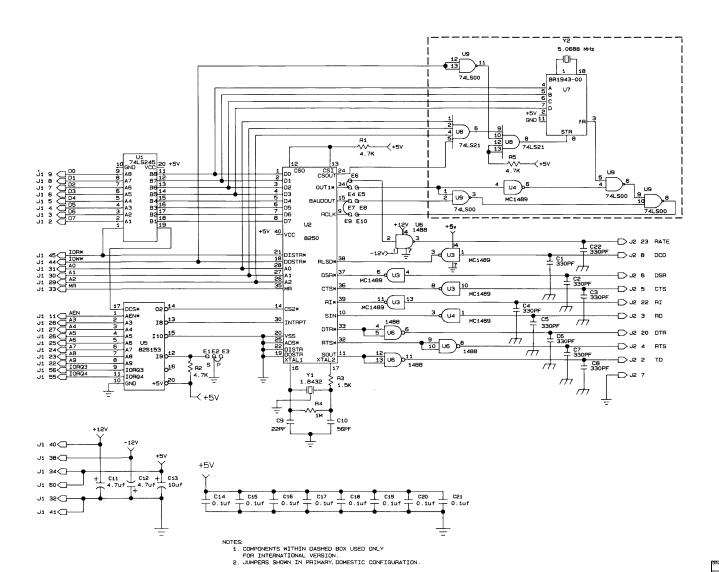

6/ Parts List RS-232 Board Catalog Number 25-1014

SYMBOL	z	DESCRIPTION	PART NO.
	1	DG 222 GOMPO / M1000 PDW .	
	1	RS-232 COMBO/ T1000 REV. A JUMPER PLUG	
	3	STANDOFF	AJ-6908 AHC-2429
	3 4	SCREW - 4-40 X 1/4 PAN H, MACHINE	
	2	NUTS - 4-40	AHD-7143
	ī	PANEL BRACKET, RS-232	AHC-3192
C1-8,22	9 1 1 2	CAPACITOR 330 PF 5/50V C. DISK	CF-7412
C9 .	1	CAPACITOR 22 PF/+.5PF/50V	CC-220DJCE
C9 C10 C11-12 C13 C14-18	1	CAPACITOR 56 PF 80% 50V C. DISK	CC-560QJCE
C11-12	2	CAPACITOR 4.7 MFD 20% 50V ELEC. AXIAL	CC-475MJAA
C13	1	CAPACITOR 10 MFD $\pm 20/25$ V ELEC. AXIAL	CC-106MFA
C14-18	5	CAPACITOR 0.1 MFD 50V AXIAL	CC-104JJL
E1-10	10	STAKING PINS	AHB-9682
Jl	1	RECEPTICAL	AJ-4052
Ј2	1	CONNECTOR, DB25 FEMALE RT. ANGLE METAL SHELL, GROUND STRAP 4-40 THREADED INSERTS	AJ-6983
R1-2	2	RESISTOR 4.7K OHM 1/4 WATT 5%	N-0247EEC
R3	1	RESISTOR 1.5K OHM 1/4 WATT 5%	N-0206EEC
R4	1	RESISTOR 1 MEG OHM 1/4 WATT 5%	N-0445EEC
Ul	1 1 1	IC 74LS245 OCTAL BUS TRANSCEIVER	AMX-4470
U2	1	IC 8250 SINGLE CHIP UART	MX-6859
U2	1	SOCKET 40-PIN DIP	AJ-6580
U3-4	2	IC MC1489 RECEIVER	MX-2143
U5	Ť	IC 82S153 IFL, MOD UART	MX-6858
U5	1		AJ-6760
U6	1	IC 1488 DRIVER	AMX-3867
Yl	1	CRYSTAL 1.8432 MHZ	MX-0097

RS-232 Board--International Catalog Number 25-1014X

SYMBOL		DESCRIPTION	PART NO.
	1 4	RS-232 COMBO/ T1000 REV. A	AJ-6908
	3	STANDOFF	AHC-2429
	4	SCREW - 4-40 X 1/4 PAN H, MACHINE	AHD-2991
	2 1	NUTS - 4-40 PANEL BRACKET, RS-232	AHD-7143 AHC-3192
C1-8,22 C9	1	CAPACITOR 22 PF/+.5PF/ 50V	CF-7412 CC-220DJC
C10	1	CAPACITOR 56 PF 80% 50V C. DISK	CC-560QJC
C11-12 C13	2 1	CAPACITOR 4.7 MFD 20% 50V ELEC. AXIAL CAPACITOR 10 MFD +20/25V ELEC. AXIAL	
C14-21			CC-104JJL
E1-10	10	STAKING PINS	AHB-9682
J1	1	RECEPTICAL	AJ-4052
J2	1	CONNECTOR, DB25 FEMALE RT. ANGLE METAL SHELL, GROUND STRAP 4-40 THREADED INSERTS	AJ-6983
R1,2,5 R3	3	RESISTOR 4.7K OHM 1/4 WATT 5%	N-0247EEC
R3	1	RESISTOR 1.5K OHM 1/4 WATT 5%	N-0206EEC
R4	1	RESISTOR 1 MEG OHM 1/4 WATT 5%	N-0445EEC
Jl	1	IC 74LS245 OCTAL BUS TRANSCEIVER	AMX-4470
J2	1	IC 8250 SINGLE CHIP UART	MX-6859
J2 J3-4	1 2	SOCKET 40-PIN DIP IC MC1489 RECEIVER	AJ-6580 MX-6859
J5	ĺ	IC 82S153 IFL, MOD UART	MX-6858
J5	ī	SOCKET 20-PIN DIP	AJ-6760
J 6	1	IC 1488 DRIVER	AMX-3867
J 7	1	IC BR1943-00	AMX-3921
18 18	1 1	IC 74LS21 DUAL 4-IN AND IC 74LS00 QUAD 2-IN NAND	MX-6502 MX-3495
71	1	CRYSTAL 1.8432 MHZ	MX-0097
72	1	CRYSTAL 5.0688	AMX-2395

.


SCHEMATIC RS-232 COMBO
TANDY 1000
PROJECT NO. 652

tandy

652

8000253 D

		REVISION		
ZONE	LTR.	DESCRIPTION	DATE	APPROVED
		RELEASE FOR PRODUCTION	5/22/85	1
	A	U3-+5vWAS+12v; ADDED PIN NO'S. PER	5.00/06	120

DESIGN DATE

APPO DATE

LINES

LINES

DATE

LINES

SCHEMATIC— RS-232 COMBO TANDY 1000 PROJECT NO. 652

tandy

BOO0253 D

		TAND	Y COMPUTER PROD	UCTS
8/	WD8250	Asynchronous	Communications	Element

TANDY COMPUTER PRODUCTS	

WD8250 Asynchronous Communications Element

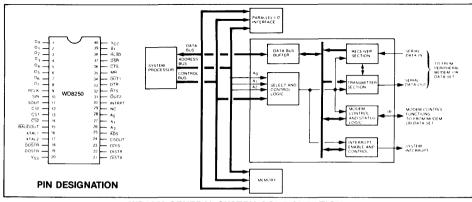
FEATURES

- Designed to be Easily Interfaced to Most Popular Microprocessors (Z-80, 8080A, 6800, etc.)
- Full Double Buffering
- Independently Controlled Transmit, Receive, Line Status, and Data Set Interrupts
- Programmable Baud Rate Generator Allows Division of Any Input Clock by 1 to (2¹⁶ - 1) and Generates the Internal 16x Clock
- Independent Receiver Clock Input
- Fully Programmable Serial-Interface Characteristics
 - -5-, 6-, 7-, or 8-Bit Characters
 - -Even, Odd, or No-Parity Bit Generation and
 - -1-, 11/2-, or 2-Stop Bit Generation
 - -Baud Rate Generation (DC to 56K Baud)
- False Start Bit Detector
- Complete Status Reporting Capabilities
- THREE-STATE TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
- Line Break Generation and Detection
- · Internal Diagnostic Capabilities
 - Loopback Controls for Communications
 Link Fault Isolation
 - Break, Parity, Overrun, Framing Error
 Simulation

- Full Prioritized Interrupt System Controls
- Single +5-Volt Power Supply

GENERAL DESCRIPTION

The WD8250 is a programmable Asynchronous Communication Element (ACE) in a 40-pin package. The device is fabricated in N/MOS silicon gate technology.


The ACE is a software-oriented device using a three-state 8-bit bi-directional data bus.

The ACE is used to convert parallel data to a serial format on the transmit side, and convert serial data to parallel on the receiver side. The serial format, in order of transmission and reception, is a start bit, followed by five to eight data bits, a parity bit (if programmed) and one, one and one half (five bit format only) or two stop bits. The maximum recommended data rate is 56K baud.

Internal registers enable the user to program various types of interrupts, modem controls, and character formats. The user can read the status of the ACE at any time monitoring word conditions, interrupts and modem status.

An additional feature of the ACE is a programmable baud rate generator that is capable of dividing an internal XTAL or TTL signal clock by a division of 1 to 2¹⁶ – 1.

The ACE is designed to work in either a polling or interrupt driven system, which is programmable by users software controlling an internal register.

WD8250 GENERAL SYSTEM CONFIGURATION

PIN DEFINITIONS

PIN NUMBER	PIN NAME	SYMBOL	FUNCTION
1-8	DATA BUS	D0-D7	3-state input/output lines. Bi-directional communication lines between WD8250 and Data Bus. All assembled data TX and RX, control words, and status information are transferred via the D0-D7 data bus.
9	RECEIVE CLK.	RCLK	This input is the 16X baud rate clock for the receiver section of the chip (may be tied to BAUDOUT pin 15).
10	SERIAL INPUT	SIN	Received Serial Data In from the communications link (Peripheral device, modem or data set).
11	SERIAL OUTPUT	SOUT	Transmitted Serial Data Out to the communication link. The SOUT signal is set to a (logic 1) marking condition upon a MASTER RESET.
12 13 14	CHIP SELECT CHIP SELECT CHIP SELECT	CS0 CS1 CS2	When CS0 and CS1 are high, and CS2 is low, chip is selected. Selection is complete when the address strobe ADS latches the chip select signals.
15	BAUDOUT	BAUDOUT	16X clock signal for the transmitter section of the WD8250. The clock rate is equal to the oscillator frequency divided by the divisor loaded into the divisor latches. The BAUDOUT signal may be used to clock the receiver by tying to (pin 9) RCLK.
16 17	EXTERNAL CLOCK IN EXTERNAL CLOCK OUT	XTAL 1 XTAL 2	These pins connect the crystal or signal clock to the WD8250 baud rate divisor circuit. See Fig. 3 and Fig. 4 for circuit connection diagrams.
18 19	DATA OUT STROBE DATA OUT STROBE	DOSTR DOSTR	When the chip has been selected, a low DOSTR or high DOSTR will latch data into the selected WD8250 register (a CPU write). Only one of these lines need be used. Tie unused line to its inactive state. DOSTR — high or DOSTR — low.
20	GROUND	VSS	System signal ground.
21 22	DATA IN STROBE DATA IN STROBE	DISTR DISTR	When chip has been selected, a low DISTR or high DISTR will allow a read of the selected WD8250 register (a CPU read). Only one of these lines need be used. Tie unused line to its inactive state. DISTR — high or DISTR — low.
23	DRIVER DISABLE	DDIS	Output goes low whenever data is being read from the WD8250. Can be used to reverse data direction of external transceiver.
24	CHIP SELECT OUT	CSOUT	Output goes high when chip is selected. No data transfer can be initiated until CSOUT is high.
25	ADDRESS STROBE	ADS	When low, provides latching for register. Select (A0, A1, A2) and chip select (CS0, CS1, CS2)
			NOTE: An active ADS signal is required when the Register Select (A0, A1, A2) signals are not stable for the duration of a read or write operation. If not required, the ADS input can be tied permanently low.

PIN		l	T
NUMBER	PIN NAME	SYMBOL	FUNCTION
26 27 28	REGISTER SELECT A2 REGISTER SELECT A1 REGISTER SELECT A0	A2 A1 A0	These three inputs are used to select a WD8250 internal register during a data read or write. See Table below.
29	NO CONNECT	NC	No Connect
30	INTERRUPT	INTRPT	Output goes high whenever an enabled interrupt is pending.
31	OUTPUT 2	OUT2	User-designated output that can be programmed by Bit 3 of the modem control register = 1, causes OUT2 to go low.
32	REQUEST TO SEND	RTS	Output when low informs the modem or data set that the WD8250 is ready to transmit data. See Modem Control Register.
33	DATA TERMINAL READY	DTR	Output when low informs the modem or data set that the WD8250 is ready to communicate.
34	OUTPUT 1	OUT1	User designated output can be programmed by Bit 2 of Modem Control Register = 1 causes OUT1 to go low.
35	MASTER RESET	MR	When high clears the registers to states as indicated in Table 1.
36	CLEAR TO SEND	CTS	Input from DCE indicating remote device is ready to transmit. See Modem Control Register.
37	DATA SET READY	DSR	Input from DCE used to indicate the status of the local data set. See Modem Control Register.
38	RECEIVED LINE SIGNAL DETECT	RSLD	Input from DCE indicating that it is receiving a signal which meets its signal quality conditions. See Modem Control Register.
39	RING INDICATOR	RI	Input, when low, indicates that a ringing signal is being received by the modem or data set. See Modem Control Register.
40	+ 5V	VCC	+5 Volt Supply.

CHIP SELECTION AND REGISTER ADDRESSING

Address Strobe (ADS pin 25): When low provides latching for register select (A0, A1, A2) and chip select (CS0, CS1, $\overline{\text{CS2}}$).

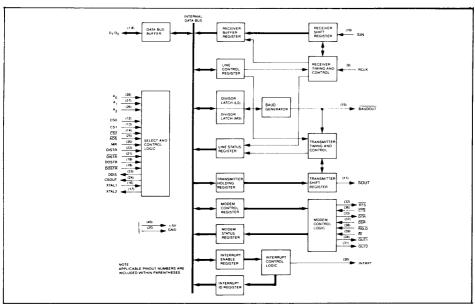
NOTE: An active ADS input is required when register select (A0, A1, A2) signals are not stable for the duration of a read or write operation. If ADS is not required for latching, tie this input permanently low.

Chip Select (CS0, CS1, $\overline{\text{CS2}}$) pins 12-14: The definition of chip selected is CS0, CS1 both high and $\overline{\text{CS2}}$ is low. Chip selection is complete when latched by $\overline{\text{ADS}}$ or $\overline{\text{ADS}}$ is tied low.

Register Select (A0, A1, A2) pins 26-28: To select a register for read or write operation, see Register Table.

NOTE: (DLAB) Divisor Latch access bit is the MSB of the Line Control Register. DLAB must be programmed high logic 1 by the system software to access the Baud Rate Generator Divisor Latches.

DLAB	A2	A1	A0	Register
0	0	0	0	Receiver Buffer (read), Transmitter Holding Register (write)
0	0	0	1	Interrupt Enable
X	0	1	0	Interrupt Identification (read only)
x	0	1	1	Line Control
x	1	0	0	MODEM Control
x	1	0	1	Line Status
x	1	1	0	MODEM Status
x	1	1	1	None
1	0	0	0	Divisor Latch (least significant byte)
1	0	0	1	Divisor Latch (most significant byte)


WD8250 OPERATIONAL DESCRIPTION

Master Reset

A high-level input on pin 35 causes the WD8250 to reset to the condition listed in Table 1.

WD8250 Accessible Registers

The system programmer has access to any of the registers summarized in Table 2. For individual register descriptions, refer to the following pages under register heading.

WD8250 BLOCK DIAGRAM

Table 1. Reset Control of Registers and Pinout Signals

Register/Signal	Reset Control	Reset State	
Receiver Buffer Register	First Word Received	Data	
Transmitter Holding Register	Writing into the Transmitter Holding Register	Data	
Interrupt Enable Register	Master Reset	All Bits Low (0-3 forced and 4-7 permanent)	
Interrupt Identification Register	Master Reset	Bit 0 is High and Bits 1-7 Are Permanently Low	
Line Control Register	Master Reset	All Bits Low	
MODEM Control Register	Master Reset	All Bits Low	
Line Status Register	Master Reset	All Bits Low, Except Bits 5 and 6 Are High	
	Master Reset	Bits 0-3 Low	
Modem Status Register	MODEM Signal Inputs	Bits 4-7 — Input Signal	
Divisor Latch (low order bits)	Writing into the Latch	Data	
Divisor Latch (high order bits)	Writing into the Latch	Data High	
SOUT	Master Reset		
BAUDOUT	Writing into either Divisor Latch	Low	
CSOUT	ADS Strobe Signal and State of Chip Select Lines	High/Low	
DDIS	DDIS = CSOUT - RCLK - DISTR (At Master Reset, the CPU sets RCLK and DISTR low.)	High	
INTRPT	Master Reset	Low	

OUT 2	Master Reset	High	
RTS	Master Reset	High	
DTR	Master Reset	High	
OUT 1	Master Reset	High	
D7-D0 Data Bus Lines	In THREE-STATE Mode, Unless CSOUT • DISTR = High or CSOUT • DOSTR = High	THREE-STATE Data (ACE to CPU) Data (CPU to ACE)	

Table 2. Summary of WD8250 Accessible Registers

	[Register	Address				
	0 DLAB=0	0 DLAB=0	1DLAB≈0	2	3	4	5	6	0DLAB:1	1DLAB=1
Bit No.	Receiver Buffer Register (Read Only)	Transmitter Holding Register (Write Only)	Interrupt Enable Register	Interrupt Identifi- cation Register	Line Control Register	MODEM Control Register	Line Status Register	MODEM Status Register	Divisor Latch (LS)	Divisor Latch (MS)
0	Data Bit 0	Data Bit 0*	Enable Received Data Available Interrupt (ERBFI)	"0" if Interrupt Pending	Word Length Select Bit 0 (WLS0)	Data Terminal Ready (DTR)	Data Ready (DR)	Delta Clear to Send (DCTS)	Bit 0	Bit 8
1	Data Bit 1	Data Bit 1	Enable Trans- mitter Holding Register Empty Interrupt (ETBEI)	Interrupt ID Bit (0)	Word Length Select Bit 1 WLS1)	Request to Send (RTS)	Overrun Error (OR)	Delta Data Set Ready (DDSR)	Bit 1	Bit 9
2	Data Bit 2	Data Bit 2	Enable Receiver Line Status Interrupt (ELSI)	Interrupt ID: Bit (1)	Number of Stop Bits (STB)	Out 1	Parity Error (PE)	Trailing Edge Ring Indicator (TERI)	Bit 2	Bit 10
3	Data Bit 3	Data Bit 3	Enable MODEM Status Interrupt (EDSSI)	0	Parity Enable (PEN)	Out 2	Framing Error (FE)	Delta Receive Line Signal Detect (DSLSD)	Bit 3	Bit 11
4	Data Bit 4	Data Bit 4	0	0	Even Parity Select (EPS)	Loop	Break Interrupt (BI)	Clear to Send (CTS)	Bit 4	Bit 12
5	Data Bit 5	Data Bit 5	0	0	Stick Parity	0	Trans- mitter Holding Register Empty (THRE)	Data Set Ready (DSR)	Bit 5	Bit 13
6	Data Bit 6	Data Bit 6	0	0	Set Break	0	Trans- mitter Shift Register Empty (TSRE)	Ring Indicator (RI)	Bit 6	Bit 14
7	Data Bit 7	Data Bit 7	0	0	Divisor Latch Access Bit (DLAB)	0	0	Received Line Signal Detect (RLSD)	Bit 7	Bit 15

^{*}Bit 0 is the least significant bit. It is the first bit serially transmitted or received.

Line Control Register

Bits 0 and 1: These two bits specify the number of bits in each transmitted or received serial character. The encoding of bits 0 and 1 is as follows:

Bit 1	Bit 0	Word Length
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

Bit 2: This bit specifies the number of stop bits in each transmitted or received serial character. If bit 2 is a logic 0, 1 Stop bit is generated or checked in the transmit or receive data, respectively. If bit 2 is a logic 1 when a 5-bit word length is selected via bits 0 and 1, 1½ Stop bits are generated or checked. If bit 2 is a logic 1 when either a 6-, 7-, or 8-bit word length is selected. 2 Stop bits are generated or checked.

Bit 3: This bit is the Parity Enable bit. When bit 3 is a logic 1, a Parity bit is generated (transmit data) or checked (receive data) between the last data word bit and Stop bit of the serial data. (The Parity bit is used to produce an even or odd number of 1s when the data word bits and the Parity bit are summed.)

Bit 4: This bit is the Even Parity Select bit. When bit 3 is a logic 1 and bit 4 is a logic 0, an odd number of logic 1s is transmitted or checked in the data word bits and Parity bit. When bit 3 is a logic 1 and bit 4 is a logic 1, an even number of bits is transmitted or checked.

Bit 5: This bit is the Stick Parity bit. When bit 3 is a logic 1 and bit 5 is a logic 1, the Parity bit is transmitted and then detected by the receiver in the opposite state indicated by bit 4.

Bit 6: This bit is the Set Break Control bit. When bit 6 is a logic 1, the serial output (SOUT) is forced to the

Table 3. Baud Rates Using 1.8432 MHz Crystal.

Desired Baud Rate	Divisor Used to Generate 16x Clock	Percent Error Difference Between Desired and Actual			
50	2304	_			
75	1536	_			
110	1047	0.026			
134.5	857	0.058			
150	768	_			
300	384	_			
600	192	shifts.			
1200	96	_			
1800	64	_			
2000	58	0.69			
2400	48				
3600	32	_			
4800	24				
7200	16	_			
9600	12				
19200	6				
38400	3	_			
56000	2	2.86			

NOTE: 1.8432 MHz is the standard 8080 frequency divided by 10.

Spacing (logic 0) state and remains there (until reset by a low-level bit 6) regardless of other transmitter activity. The feature enables the CPU to alert a terminal in a computer communications system.

Bit 7: This bit is the Divisor Latch Access Bit (DLAB). It must be set high (logic 1) to access the Divisor Latches of the Baud Rate Generator during a Read or Write operation. It must be set low (logic 0) to access the Receiver Buffer, the Transmitter Holding Register, or the Interrupt Enable Register.

WD8250 Programmable Baud Rate Generator

The WD8250 contains a programmable Baud Rate Generator that is capable of taking any clock input (DC to 3.1 MHz) and dividing it by any divisor from 1 (216 – 1). The output frequency of the Baud Generator is 16x the Baud rate. Two 8-bit latches store the divisor in a 16-bit binary format. These Divisor Latches must be loaded during initialization in order to insure desired operation of the Baud Rate Generator. Upon loading either of the Divisor Latches, a 16-bit Baud counter is immediately loaded. This prevents long counts on initial load.

Tables 3 and 4 illustrate the use of the Baud Generator with two different driving frequencies. One is referenced to a 1.8432 MHz crystal. The other is a 3.072 MHz crystal.

NOTE

The maximum operating frequency of the Baud Generator is 3.1 MHz. However, when using divisors of 6 and below, the maximum frequency is equal to 1/2 the divisor in MHz. For example, if the divisor is 1, then the maximum frequency is 1/2 MHz. In no case should the data rate be greater than 56K Baud.

Line Status Register

This 8-bit register provides status information to the CPU concerning the data transfer. The contents of

Table 4. Baud Rates Using 3.072 MHz Crystal.

Desired Baud Rate	Divisor Used to Generate 16x Clock	Percent Error Difference Between Desired and Actual
50	3840	_
75	2560	
110	1745	0.026
134.5	1428	0.034
150	1280	_
300	640	
600	320	
1200	160	
1800	107	
2000	96	
2400	80	
3600	53	0.628
4800	40	-
7200	27	1.23
9600	20	_
19200	10	
38400	5	
56000	3	14.285

the Line Status Register are indicated in table 2 and are described below.

Bit 0: This bit is the receiver Data Ready (DR) indicator. Bit 0 is set to a logic 1 whenever a complete incoming character has been received and transferred into the Receiver Buffer Register. Bit 0 may be reset to a logic 0 either by the CPU reading the data in the Receiver Buffer Register or by writing a logic 0 into it from the CPU.

Bit 1: This bit is the Overrun Error (OE) indicator. Bit 1 indicates that data in the Receiver Buffer Register was not read by the CPU before the next character was transferred into the Receiver Buffer Register, thereby destroying the previous character. The OE indicator is reset whenever the CPU reads the contents of the Line Status Register.

Bit 2: This bit is the Parity Error (PE) indicator. Bit 2 indicates that the received data character does not have the correct even or odd parity, as selected by the even-parity-select bit. The PE bit is set to a logic 1 upon detection of a parity error and is reset to a logic 0 whenever the CPU reads the contents of the Line Status Register.

Bit 3: This bit is the Framing Error (FE) indicator. Bit 3 indicates that the received character did not have a valid Stop bit. Bit 3 is set to a logic 1 whenever the Stop bit following the last data bit or parity bit is detected as a zero bit (Spacing level).

Bit 4: This bit is the Break Interrupt (BI) indicator. Bit 4 is set to a logic 1 whenever the received data input is held in the Spacing (Logic 0) state for longer than a full word transmission time (that is, the total time of Start bit + data bits + Parity + Stop bits).

NOTE

Bits 1 through 4 are the error conditions that produce a Receiver Line Status interrupt whenever any of the corresponding conditions are detected.

Bit 5: This bit is the Transmitter Holding Register Empty (THRE) indicator. Bit 5 indicates that the WD8250 is ready to accept a new character for transmission. In addition, this bit causes the WD8250 to issue an interrupt to the CPU when the Transmit Holding Register Empty Interrupt enable is set high. The THRE bit is set to a logic 1 when a character is transferred from the Transmitter Holding Register into the Transmitter Shift Register. The bit is reset to logic 0 concurrently with the loading of the Transmitter Holding Register by the CPU.

Bit 6: This bit is the Transmitter Shift Register Empty (TSRE) indicator. Bit 6 is set to a logic 1 whenever the Transmitter Shift Register is idle. It is reset to logic 0 upon a data transfer from the Transmitter Holding Register to the Transmitter Shift Register. Bit 6 is a read-only bit.

Bit 7: This bit is permanently set to logic 0.

Interrupt Identification Register

The WD8250 has an on chip interrupt capability that allows for complete flexibility in interfacing to all popular microprocessors presently available. In order to provide minimum software overhead during data character transfers, the WD8250 prioritizes interrupts into four levels. The four levels of interrupt conditions are as follows: Receiver Line Status (priority 1); Received Data Ready (priority 2); Transmitter Holding Register Empty (priority 3); and MODEM Status (priority 4).

Information indicating that a prioritized interrupt is pending and source of that interrupt are stored in the Interrupt Identification Register (refer to table 5). The Interrupt Identification Register (IIR), when addressed during chip-select time, freezes the highest priority interrupt pending and no other interrupts are acknowledged until the particular interrupt is serviced by the CPU. The contents of the IIR are indicated in table 2 and are described below.

Bit 0: This bit can be used in either a hardwired prioritized or polled environment to indicate whether an interrupt is pending. When bit 0 is a logic 0, an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine. When bit 0 is a logic 1, no interrupt is pending and polling (if used) continues.

Bits 1 and 2: These two bits of the IIR are used to identify the highest priority interrupt pending as indicated in table 5.

Bits 3 through 7: These five bits of the IIR are always logic 0.

Interrupt Enable Register

This 8-bit register enables the four interrupt sources of the WD8250 to separately activate the chip Interrupt (INTRPT) output signal. It is possible to totally disable the interurpt system by resetting bits 0 through 3 of the Interrupt Enable Register. Similarly, by setting the appropriate bits of this register to a logic 1, selected interrupts can be enabled. Disabling the interrupt system inhibits the Interrupt identification Register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the Line Status and MODEM Status Registers. The contents of the Interrupt Enable Register are indicated in table 2 and are described below.

Bit 0: This bit enables the Received Data Available Interrupt when set to logic 1. Bit 0 is reset to logic 0 upon completion of a read of the Receiver Buffer Register.

Bit 1: This bit enables the Transmitter Holding Register Empty Interrupt when set to a logic 1. Bit 1 is reset to logic 0 upon a write to the Transmitter Holding Register.

Table 5. Interrupt Control Functions.

Interr	upt Identit Register		Interrupt Set and Reset Functions				
Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Flag	Interrupt Source	Interrupt Reset Control	
0	0	1	-	None	None	_	
1	1	0	Highest	Receiver Line Status	Overrun Error or Parity Error or Framing Error or Break Interrupt	Reading the Line Status Register	
1	0	0	Second	Received Data Available	Receiver Data Available	Reading the Receiver Buffer Register	
0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register (if source of interrupt) or Writing into the Transmitter Holding Register	
0	0	0	Fourth	MODEM Status	Clear to Send or Data Set Ready or Ring Indicator or Received Line Signal Detect	Reading the MODEM Status Register	

Bit 2: This bit enables the Receiver Line Status Interrupt when set to logic 1. Bit 2 is reset to logic 0 upon completion of the associated interrupt service routine.

Bit 3: This bit enables the MODEM Status Interrupt when set to logic 1. Bit 3 is reset to logic 0 upon completion of the associated interrupt service routine.

Bits 4 through 7: These four bits are always logic 0.

MODEM Control Register

This 8-bit register controls the interface with the MODEM or data set (or a peripheral device emulating a MODEM). The contents of the MODEM Control Register are indicated in table 2 and are described below.

Bit 0: This bit controls the Data Terminal Ready (DTR) output. When bit 0 is set to a logic 1, the DTR output is forced to a logic 0. When bit 0 is reset to a logic 0, the DTR output is forced to a logic 1.

NOTE

The DTR output of the WD8250 may be applied to an EIA inverting line driver (such as the DS1488) to obtain the proper polarity input at the succeeding MODEM or data set.

Bit 1: This bit controls the Request to Send (RTS) output. Bit 1 affects the RTS output in a manner identical to that described above for bit 0.

Bit 2: This bit controls the Output 1 (OUT 1) signal, which is an auxiliary user-designated output. Bit 2

affects the $\overline{\text{OUT 1}}$ output in a manner identical to that described above for bit 0.

Bit 3: This bit controls the Output 2 (OUT 2) signal, which is an <u>auxiliary</u> user-designated output. Bit 3 affects the OUT 2 output in a manner identical to that described above for bit 0.

Bit 4: This bit provides a loopback feature for diagnostic testing of the WD8250. When bit 4 is set to logic 1, the following occur: the transmitter Serial Output (SOUT) is set to the HIGH IMPEDANCE state; the receiver Serial Input (SIN) is disconnected; the output of the Transmitter Shift Register is "looped back" into the Receiver Shift Register input; the four MODEM Control inputs (CTS, DSR, RLSD, and RI) are disconnected; and the four MODEM Control outputs (DTR, RTS, OUT 1, and OUT 2) are internally connected to the four MODEM Control inputs. In the diagnostic mode, data that is transmitted is immediately received. This feature allows the processor to verify the transmit- and receive-data paths of the WD8250.

In the diagnostic mode, the receiver and transmitter interrupts are fully operational. The MODEM Control Interrupts are also operational but the interrupts' sources are now the lower four bits of the MODEM Control Register instead of the four MODEM Control inputs. The interrupts are still controlled by the Interrupt Enable Register.

The WD8250 interrupt system can be tested by writing into the lower six bits of the Line Status Register

and the lower four bits of the MODEM Status Register. Setting any of these bits to a logic 1 generates the appropriate interrupt (if enabled). The resetting of these interrupts is the same as in normal WD8250 operation. To return to this operation, the registers must be reprogrammed for normal operation and then bit 4 must be reset to logic 0.

Bits 5 through 7: These bits are permanently set to logic 0.

MODEM Status Register

This 8-bit register provides the current state of the control lines from the MODEM (or peripheral device) to the CPU. In addition to this current-state information, four bits of the MODEM Status Register provide change information. These bits are set to a logic 1 whenever a control input from the MODEM changes state. They are reset to logic 0 whenever the CPU reads the MODEM Status Register.

The contents of the MODEM Status Register are indicated in table 2 and are described below.

Bit 0: This bit is the Delta Clear to Send (DCTS) indicator. Bit 0 indicates that the CTS input to the chip has changed state since the last time it was read by the CPU.

Bit 1: This bit is the Delta Data Set Ready (DDSR) indicator. Bit 1 indicates that the DSR input to the chip has changed state since the last time it was read by the CPU.

Bit 2: This bit is the Trailing Edge of Ring Indicator (TERI) detector. Bit 2 indicates that the \overline{RI} input to the chip has changed from an On (logic 1) to an Off (logic 0) condition.

Bit 3: This bit is the Delta Received Line Signal Detector (DRLSD) indicator. Bit 3 indicates that the RLSD input to the chip has changed state.

NOTE

Whenever bit 0, 1, 2, or 3 is set to logic 1, a MODEM Status Interrupt is generated.

Bit 4: This bit is the complement of the Clear to Send (CTS) input.

Bit 5: This bit is the complement of the Data Set Ready (DSR) input.

Bit 6: This bit is the complement of the Ring Indicator (RI) input

Bit 7: This bit is the complement of the Received Line Signal Detect (RLSD) input.

Typical Applications

Figures 1 and 2 show how to use the WD8250 chip in an 8080A system and in a microcomputer system with a high-capacity data bus.

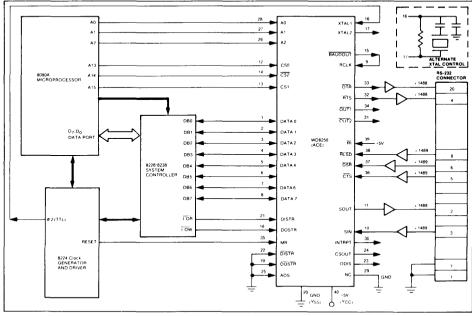


FIGURE 1. TYPICAL 8-BIT MICROPROCESSOR/RS-232 TERMINAL INTERFACE USING THE ACE.

Typical Applications (continued)

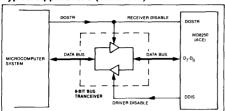


FIGURE 2. TYPICAL INTERFACE FOR A HIGH-CAPACITY DATA BUS.

ABSOLUTE MAXIMUM RATINGS

Temperature Under Bias 0° C to +70° C
Storage Temperature -65° C to +150° C (Ceramic)
-50° C to +125° C (Plastic)

All Input or Output Voltages with

Respect to V5S -0.5 V to +7.0 V Power Dissipation 750 mW

Absolute maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended; operation should be limited to those conditions specified under DC Electrical Characteristics.

DC Electrical Characteristics

 $T_A = 0$ °C to +70°C, $V_{CC} = +5V \pm 5\%$, $V_{SS} = 0V$, unless otherwise specified.

, ·						
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
VILX	Clock Input Low Voltage	-0.5		0.8	V	
VIHX	Clock Input High Voltage	2.0	1	VCC	V	
VIL	Input Low Voltage	-0.5		0.8	V	
VIH	Input High Voltage	2.4		VCC	V	1.
VOL	Output Low Voltage			.45	V	I _{OL} ≈1.6mA on all outputs
VOH	Output High Voltage	2.4		}	V	I _{OH} =-100 μA
ICC(AV)	Avg Power Supply Current (VCC)			150	ma	
IIL	Input Leakage			± 10	μΑ	
ICL	Clock Leakage			± 10	μΑ	
IDL	Data Bus Leakage			± 10	μΑ	V _{OUT} = 0.4V Data Bus is at High-Impedance State

Capacitance

TA = 25°C, VCC = VSS = 0V

Symbol	Parameter	Тур.	Max.	Units	Test Conditions			
CXIN	Clock Capacitance	10	15	pF	fc=1 MHz			
CIN	Input Capacitance	6	10	pF	Unmeasured pins returned			
COUT	Output Capacitance	10	20	pF	to Vss			
		1	Typical Supply Cu Temperature, Nort	rrent vs. mailzed				
		1.5						
		1,0						
	o o o							
	ū	0.5	·25	+50 +7	75			

AC Electrical Characteristic TA = 0°C to +70°C, V_{CC} = +5V ± 5% Symbol Parameter

Test Conditions

Symbol	Parameter	Units	Min	Max			
tAW	Address Strobe Width	ns	120		1TTL	Load	
tACS	Address and Chip Select Setup Time	ns	100		1TTL Load		
tAH	Address Hold Time	ns	0		1TTL	. Load	
tcss	Chip Select Output Delay from Latch	ns		160	1TTL	. Load	
tDID	DISTR/DISTR Delay from Latch	ns	50		1TTL	. Load	
tDIW	DISTR/DISTR Strobe Width		ns	300		1TTL	Load
tRC	Read Cycle Delay	ns	655		1TTL	Load	
RC	Read Cycle = tACS + tDID + tDIW + tRC + 20 ns	ns	1125		1TTL	Load	
tDD	DISTR/DISTR to Driver Disable Delay	ns		200	1TTL	Load	
tDDD	Delay from DISTR/DISTR to Data	ns		300	1TTL	Load	
tHZ	DISTR/DISTR to Floating Data Delay	ns	60		1TTL	Load	
tDOD	DOSTR/DOSTR Delay From Latch	ns	20		1TTL	Load	
tDOW	DOSTR/DOSTR Strobe Width	ns	175		1TTL	Load	
twc	Write Cycle Delay		ns	685		1TTL	. Load
wc	Write Cycle = tACS + tDOD + tDOW + tWC + 20 r	ns	1000		1TTL	. Load	
tDS	Data Setup Time	ns	175		1TTL	Load	
tDH	Data Hold Time		ns	60		1TTL	Load
tcsc	Chip Select Output Delay from Select		ns		260	1TTL	Load
tDIC	DISTR/DISTR Delay from Select		ns	150		1TTL	Load
tDOC	DOSTR/DOSTR Delay from Select	ns	150		1TTL	Load	
			l			Tes	
Symbol	Parameter	Min.	Max.	Unit	s (Condit	ions
Baud Ge							
N	Baud Rate Divisor	1	216-1				
tBLD	Baud Output Negative Edge Delay	250 typ ns			100pF Load		
tBHD	Baud Output Positive Edge Delay	e Delay 250 typ ns			100pF Load		
tLW	Baud Output Down Time				100pF		
tHW	Baud Output Up Time	330 Typ	0 Typ ns		1	100pF	Load
Receiver							
tSCD	Delay from RCLK to Sample Time		2 typ μs				
tSINT	Delay from Stop to Set Interrupt		2 typ μs			00pF l	
tRINT	Delay from DISTR/DISTR (RD RBR) to Reset	.250	1 typ	μs	1	00pF	Load
Transmit	Interrupt						
	Delay from DOSTR/DOSTR (WR THR) to Reset	.250	1 typ		١,	00pF	oad
tHR	Interrupt	.230	гтур	μS	- ['	оорг	LUau
tirs	Delay from Initial INTR Reset to Transmit Start		16 typ	BAUDO	TUC		
'ino	Delay work things with those to thousand dank		, ,	Cycle	_		
tsı	Delay from Initial Write to Interrupt		24 typ	BAUDO	TUC		
				Cycle	es		
tss	Delay from Stop to Next Start	.250	1 typ	μS	1		
tSTI	Delay from Stop to Interrupt (THRE)		8 typ	BAUDO			
_				Cycle			
TIR	B / / BIOTE /BIOTE : :-						004
	Delay from DISTR/DISTR (RD IIR) to Reset	.250	1 typ	μS	ין	00pF	LUAU
	Interrupt (THRE)	.250	1 typ	μS	¹	00pF	LUAU
Modem C	Interrupt (THRE)		1 typ	μs	+	00pF 00pF	

tSIM	Delay to Set Interrupt from MODEM Input	.250	1 typ	μS	100pF Load
tRIM	Delay to Reset Interrupt from DISTR/DISTR	.250	1 typ	μs	100pF Load
	(RD MSR)				1

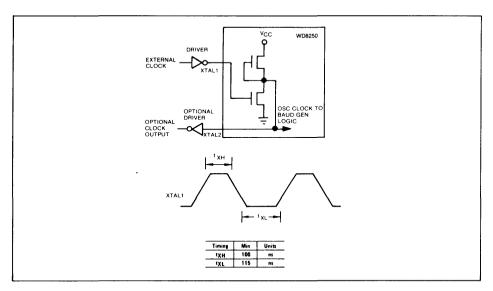


FIGURE 3. EXTERNAL CLOCK INPUT (3.1 MHz MAX.)

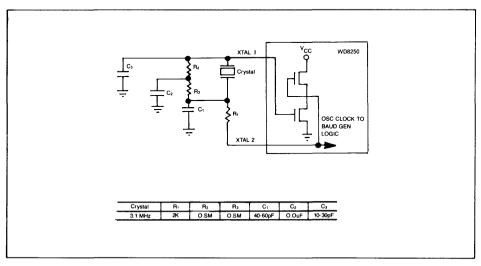


FIGURE 4. TYPICAL CRYSTAL OSCILLATOR NETWORK

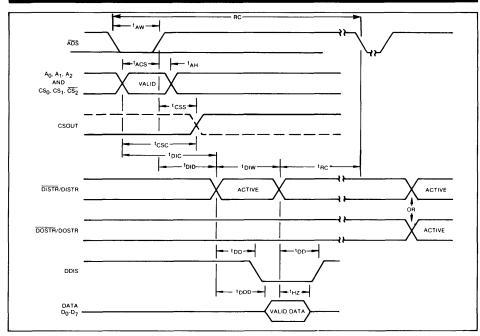


FIGURE 5. READ CYCLE TIMING

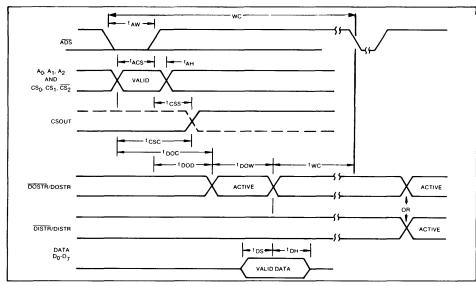


FIGURE 6. WRITE CYCLE TIMING

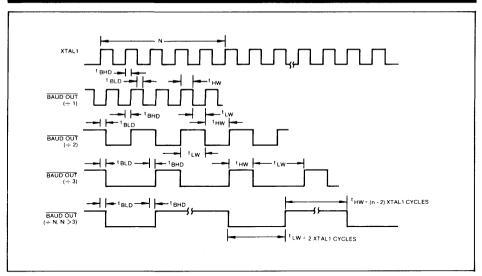


FIGURE 7. BAUDOUT TIMING

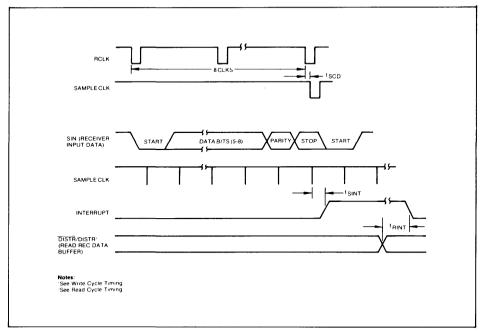


FIGURE 8. RECEIVER TIMING

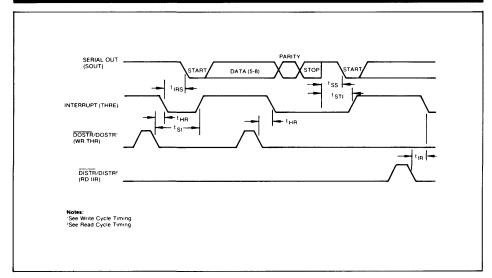
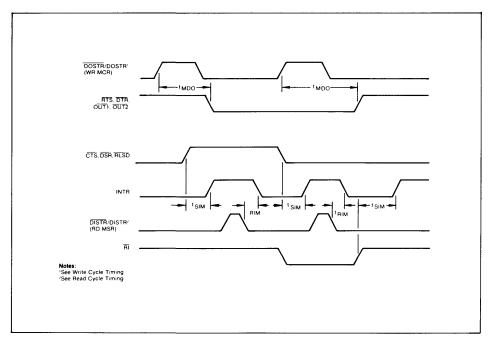
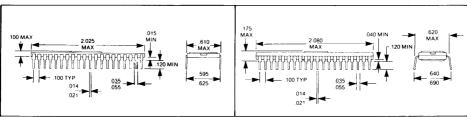


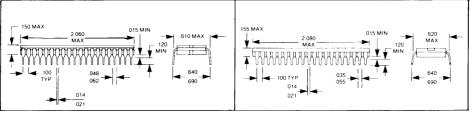
FIGURE 9. TRANSMITTER TIMING




FIGURE 10. MODEM CONTROLS TIMING

ORDERING INFORMATION

Part Number	Max Clock Rate ¹	Bits/Character
WD8250*-00	3.1 MHz	5, 6, 7, 8
WD8250*-20	3.1 MHz	6, 7, 8
WD8250*-30	500 kHz	5, 6, 7, 8


NOTES:

- This is the maximum clock rate that can be applied to pins 16 or 17.
- *Consult your local Western Digital Sales Representative for information regarding package availability, price, and delivery.

40 LEAD CERAMIC "A" or "AL"

40 LEAD RELPACK "B" or "BL"

40 LEAD CERDIP "CL"

40 LEAD PLASTIC "P" or "PL"

Information furnished by Western Digital Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Western Digital Corporation for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Western Digital Corporation. Western Digital Corporation reserves the right to change specifications at anytime without notice.

Tandy [♠] 1000 Mouse Controller/Calendar	TANDY COMPUTER PRODUCTS
	Tandy [®] 1000 Mouse Controller/Calendar

____ TANDY COMPUTER PRODUCTS —

CO	NTENTS 1	PAGE
1/	INTRODUCTION	. 1
2/	SPECIFICATIONS	. 3
3/	THEORY OF OPERATION (HARDWARE)	. 5
4/	THEORY OF OPERATION (SOFTWARE)	
5/	ALIGNMENTS	. 15
6/	TROUBLESHOOTING	. 17
7/	PRINTED CIRCUIT BOARDS COMPONENT SIDE (FIGURE 2) SOLDER SIDE (FIGURE 3) SILKSCREEN (FIGURE 4)	. 20
8/	SCHEMATIC	. 23
9/	PARTS LIST	. 25

1/ Introduction

The Mouse Controller/Calender Board interfaces the DIGI-Mouse pointing device (Cat. No. 26-1197) to the Tandy 1000. The application programs that require the DIGI-Mouse pointing device can be used on the Tandy 1000. Also the battery backed clock/calendar allows the user to run the software provided on the diskette that comes with the owner's manual.

TANDY COMPUTER (
 TANDY COMPOTER	PRODUCTS	

2/ Specifications

Dimensions: Standard half size board (5 x 4.2 inches).

Batterv: 3.0-Volt Lithium coin cell, type CR2320

(Cat. No. 23-163). The battery life is

one year.

8042 8-bit single chip processor. Processor:

Clock Speed: 7.16 MHz

Ambient Temperature Range: 55° to 95° F (12° to 35° C)

Storage Temperature Range: -40° to $+160^{\circ}$ F $(-40^{\circ}$ to 71° C)

TANDY COMPUTER F	BODI ICTE	
TARBY COMPOTER F		-

3/ Theory of Operation (Hardware)

Look at the block diagram (Figure 1) and the clock/calendar schematic while reading the information below.

Bus I/F

Data, address, and control signals of the 1000 interface bus are buffered by U9 (an octal bus transceiver) and U7 (an octal buffer/line driver with 3-state outputs).

Chip Select and Reset Logic

The address lines are decoded by U2, U5, and U6. When the 1000 writes or reads to Ports 2FC or 2FE, a chip select signal is generated at Pin 6 of U2. The chip select controls U9 (the data buffer) and U3 (the 8042 processor).

During DMA cycles, the AEN signal from the 1000 bus, disables the chip select signal at Pin 1 of U7. An active AEN signal disables the 1Y outputs of U7, causing the A08 signal from Pin 12 of U7 to float and be pulled high by R20. U5 then inverts the A08 signal, ensuring that the chip select is disabled during DMA.

One half of Ul (a dual D-type flip-flop) is used in a "divide by 2" configuration. The 14.32 MHz oscillator signal from the 1000 interface bus is divided in half for a clock speed of 7.14 MHz, to be used by the 8042 processor. The 7.14 MHz clock is at Pin 5 of Ul.

The other half of Ul is used as a reset latch. A reset signal is provided for the 8042 processor by ORing together the System Reset signal from the computer interface bus and the signal from the reset latch at Pin Il of U2. The 8042 processor can be reset by a system reset or a write to I/O port 2FF. A write to I/O port 2FD clears the reset signal.

8042 Processor

In the heart of the option board is the 8042 processor (U3). This processor acts as an input port for serial information from the DIGI-Mouse and the Clock/Calendar chip (U8). It then translates this information to a parallel format and controls its transfer to the computer interface bus. The Clock/Calendar option board uses interrupt request IRQ3 to inform the 1000 when it is ready to transfer data.

DIGI-Mouse Buffers and Filters

A 9-Pin DB jack at J2 connects the DIGI-Mouse to the clock/calendar board. RC filtering is used to reduce noise in the inputs. U4 (a CMOS hex schmitt trigger) provides further buffering and waveshaping of the DIGI-Mouse inputs, which are interfaced to the processor chip through its peripheral port bits P10 to P16.

Clock Chip

The Phillips-Signetics Clock/Calendar Chip (U8) interfaces directly to U3 at its peripheral port bits P17, P20-P23, and P27. The time base for the clock chip is a 32.768 KHz crystal, which is similar to that found in watches. The battery MUST be installed for the clock function to work. When a power failure occurs, the chip indicates this by sending a low-battery signal (POWF) to the 8042 processor.

4/ Theory of Operation (Software)

User specifications:

- The motion sensor is oriented with the connecting cable and buttons pointing away from the user, the positive x axis extends to the right and the positive y axis extends toward the user.
- Minimum motion allowed before it is detected is 1/79 of an inch along either axis. This distance is called a tick.
- The minimum unit of time for the Clock/Calendar chip is 1 minute. Maximum accuracy is + 1/2 minute. The units of time accepted by the chip are minutes, (24) hours, day of month, and month.
- There are 3 modes for the mouse's motion data and button data that can be transferred to the host: the full interrupt mode, the initial interrupt and poll mode, and the poll only mode.
- To communicate with the clock/calendar chip, the user employs the set time command and a read time command.

I/O Ports used by the Clock/Calendar Board:

8042	Data Port	2FC
8042	Command/Status Port	2FE
8042	Set RESET 8042 Port	2FF
8042	Clear RESET 8042 Port	2FD

Layout of the 8042's status port (2FE):

Read by the 8088:

```
Bit #0 = Output register full flag (OBF) l=full
Bit #1 = Input register full flag (IBF) l=full
Bit #2 = F0 flag - not used
Bit #3 = F1 flag - command flag l=input to port 2FE
Bit #4 = Primary button status l=button up
Bit #5 = Secondary button status l=button up
Bit #6 = Tertiary button status l=button up
Bit #7 = Calendar power status l=power has failed
```

Written to by the 8088:

This is the same as for the data written to Data Port 2FC, except the Fl (command) flag in 8042's status port is set.

Output:

When sending data or commands from the 8088 to the 8042, the following procedure must be used:

- Check the status port (2FE) of the 8042 to see if the input port full flag is set (Bit 1).
- If the flag is set, wait until the 8042 clears it. If it is not cleared within 1 millisecond, reset the 8042 chip because it is locked up.
- 3. If the flag is clear, proceed.
- 4. Check the length of the command. If it is equal to 1, then send the data to 2FE, and stop here.
- If the length equals 2 or more, then send the data to 2FC, and proceed.
- Wait until the input port full flag is cleared by the 8042 before sending the next byte of data to 2FC.
- 7. When the length equals 1, send it to 2FE, and stop here.

Formats of Commands to the 8042:

Command	Header	Data
Set Time	01h	All data must be in BCD format. 1st byte = minutes. 2nd byte = hours (24 hour clock). 3rd byte = day of the month. 4th byte = month.
Read Time	02h	None Returns data packet "R".
Set Mouse Motion Interr		Output is 2 bytes. 0 = disable function. 1 - 255 = net number of "ticks" to be moved before interrupt is
and		triggered. Returns data packet "M".

__ TANDY COMPUTER PRODUCTS -

Button Interrupt 0 = disable function.

1 - 255 = enable function

Returns data packet "B".

Set Timer 20h

Interrupt

Outputs 1 byte of data 0 = disable function. 1 - 255 = enable function Returns data packet "A".

(Timer is set to interrupt approximately 40 times per second if the data is available to send.)

What is happening:

The 8042 is interrupted every time data is written to the input port 2FC (or 2FE, which set the command flag). The 8042 moves the data from the input register into the input buffer and increments a counter. It then returns to the point in the mouse data sampling and processing cycle at the point of interruption.

During each cycle, the 8042 checks the command flag to see if a command has been received. If the command flag is set, the 8042 checks the header byte to determine which command is in its input buffer. It then compares the counter to the number of bytes in that command. If any of these tests fails, the 8042 resets the pointer to the input buffer, clears the counter and the command flag, and continues with its normal cycle. If all the tests succeed, the 8042 jumps to the routine that handles that command. Each command has the requirement to reset the buffer pointer, the counter, and the command flag, and then return control to the normal process.

Input:

Data transfer between the 8042 and the main processor (8088) uses the interrupt mode, the poll mode, or both. The 8042 interrupts the 8088 by toggling Port 2lh, Bit 3, which is connected through a buffer to the 8259A interrupt controller chip. The clock/calendar board uses IRQ3 as an interrupt. Internally, the 8042 knows if the 8088 has read/written a byte from/to it by checking the status of the OBF/IBF flags. Three procedures are available to transfer the data from the 8042 to the 8088. They are discussed below.

Mode 1: Full interrupt mode

This mode uses the interrupt line to signal each byte to be transmitted. As each byte is transmitted, the common procedure below is executed except Mode 3 must have the latched interrupt cleared after each byte is processed. This mode may be the fastest mode when only the clock interrupt is actively being triggered.

Mode 2: Initial interrupt and poll mode

This mode uses the interrupt line to signal the start of a data packet, and polls the rest of the packet. It clears the latched interrupt only after all the data packet is transmitted. It uses the common procedure outlined below.

Mode 3: Poll only mode

This mode does not use the interrupt signal at all. It uses only the output register full flag in the 8042's status register (Port 2FE).

Common procedure:

The 8088 must have the following initialized before any interrupt mode is used:

- A hardware interrupt vector at 002C.
- . An interrupt controller at port 21 (ANDed with a F7).

The 8042 has a data packet set up in its output buffer and begins transmitting by placing the "header" into the output register (Port 2FC). Placing the header byte into the ouput register sets the output register full flag in the status register (Port 2FE, Bit 0) and sends a signal on the interrupt line to the 8088 (via the 8259A). The 8042 begins its normal processing cycle, testing the output register full flag on each cycle.

If the flag is set, the 8042 sends another signal on the interrupt line. If the flag is cleared and the packet still contains data to send, the 8042 places the next data byte into the output register and sends a signal on the interrupt line to the 8088. If the flag is cleared and the data packet is empty, the 8042 does NOT send an interrupt signal, but continues with its normal processing.

On the 8088 side, the "mouse" interrupt has a priority behind the 8253 timer, keyboard, and hard disk. This means that when the interrupt enters its routine, the higher-level interrupts can be enabled. The interrupt handler routine should do all the following:

- Ensure that the 8042 generated the interrupt by checking the status of its output register full flag.
- . Identify the type of data packet by its "header" byte and switch to the appropriate routine when the entire data packet is received.
- After the data packet has been processed, clear or reset the buffer pointers, counters, and the latched interrupt.

Format of Data Packets from the 8042:

Data Packet	Header	Data
	======	z====
Mouse data		4 bytes of data
All data	"A"	$lst\ byte = MSB\ of\ Delta\ x$
Motion data only	"M"	2nd byte = LSB of Delta x
_		3rd byte = MSB of Delta y
		4th byte = LSB of Delta y

(The button data is found in the status register (Port 2FE.)

Mouse data Button data only	"B"	none data found in status register (Port 2FE bits # 4, 5, 6)
Read time data	"R"	4 bytes of data in BCD format 1st byte = minutes 2nd byte = hours (24-hour clock) 3rd byte = day of month 4th byte = month

Initialization Procedures of 8088:

The following hardware and software interrupts should be initialized:

Description Address
Hardware interrupt vector (INT 0B) 002C Dou
Application interrupt vector (INT 33) 00CC Dou
Hardware interrupt controller (IRQ3) Port 21
Video display interrupt (INT 10) 0040 Dou

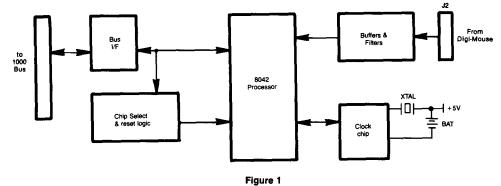
002C Doubleword Pointer 00CC Doubleword Pointer Port 21 (reset Bit 3) 0040 Doubleword Pointer

Type

Operation of the Clock/Calendar:

When the 8042 receives either the Set Time or Read Time command, it shuts off all other operations until it is finished with the command. All the resources of the 8042 are required to communicate with the clock/calendar chip.

In the Set Time command, the 8042 breaks up the 4 bytes of time data into 4 packets and sends them serially a bit at a time. Upon completion, the 8042 resumes normal operation.


In the Read Time command, the 8042 sets up bit serial communications with the clock/calendar chip and builds 4 time data packets. The 4 packets are converted to bytes and placed in the output buffer behind the "R" header byte. The 8042 sets up a Read Time data packet to be sent to the 8088 and returns to normal operation.

If the power fails, the calendar power status bit in the status register (Port 2FE Bit 7) is set. First, check to see if the power failure is temporary. (Perhaps the battery lost contact with the clock circuit because of a bump or jarring of the equipment.) To check for temporary failure, issue a Set Time command. If the power failure bit goes to zero everything is normal. If the power failure bit is not reset, then the battery either is dead or is dislodged from its holder clip. After replacing or resetting the battery, issue the Set Time command to ensure proper operation.

Operation of the 8042:

Upon power up/RESET, the 8042 initializes the system by zeroing all RAM and clearing all flags, ports, and registers. It then sets up the default conditions and enters the normal mouse data processing cycle, which follows:

- The 8042 takes a copy of the Mouse/Clock/Calendar data port (P1) and saves a copy.
- 2. It then checks to see if there is any change in the status of the buttons. If there is, the 8042 sends a copy to the status register.
- 3. Next, the 8042 determines the Delta x changes or Delta y changes. Both Deltas use the same process.
- 4. The 8042 retrieves the copy of Port Pl and compares the bit pattern of xA and xB to the old copy to see if any changes have occured. If a change has occured, then the 8042 determines whether the change is +1, -1, or null. (Null occurs when the 8042 misses 2 state changes of xA and xB.)
- 5. The Delta x (or y) working accumulator (+-32735 units) is then either incremented or decremented respectively. A null result does not affect the accumulators.
- 6. At this point, the 8042 checks the event-triggered data polls for motion and button data. If either occurred, then the 8042 transfers the values in the working accumulators to the output buffer behind the appropriate header byte and clears the working accumulators to zero. If not, then the 8042 checks to see if any input from the 8088 has been received by checking the Fl command flag. If there is input in the input buffer, the 8042 tests the header to see which bit is "on" and jumps to the routine that handles that command.
- 7. After checking for input, the 8042 then checks the internal timer to see if anything has timed out. Two items are connected to the timer flag, the 8042 and the timed data transfer interrupt. All outputs to the 8088 are tied to the timer. Each time the timer times out, the 8042 checks the output register full flag to see if it is set. If the flag is set, the 8042 sends off a signal on the interrupt line to the 8088, resets the timer, and returns to normal operation. The 8042 checks to see if it needs to send any more data. If it does, it moves the next data byte to the output register, sends a signal on the interrupt line, and returns to normal operations. If the output buffer is empty, the 8042 simply returns to normal operation. Connected to the timer is the timed data transfer interrupt. When the timer interrupt is enabled, the 8042 also checks to see if the timer has timed out. If it has, then the 8042 transfers the mouse data from the working accumulators to the output buffer behind the header byte and ships it to the 8088. It then clears the working accumulators and returns to the start of the cycle.

DIGI-Mouse/Clock Controller Board Block Diagram I/F

5/ Alignments

A Frequency Counter with a timer function is necessary for a correct alignment. To ensure an accurate time base, the trim capacitor (Cl9) is set at the factory. If you need to replace Yl, U8, or Cl9, adjust Cl9 for an average waveform period of 7.8125 milliseconds at Pin 11 of U8.

The oscillator will not be loaded by the test instrument because the Signetics SAB3019 Clock/Calendar chip provides a buffered oscillator output at Pin 11 that is divided by 256. The frequency at Pin 11 should be 128 Hz. Since this is a low frequency, most frequency counters are more accurate if their timer fuction is used.

No other alignments need be made. When installing the board, however, take normal precautions against static electricity discharge.

· TANDY COMPUT		
 TANDY COMPOT	ER PRODUCTE	

6/ Troubleshooting

If the board is malfunctioning, check to see that the clocks are present at both the 7.16MHz signal at Pin 3 of U3 and the 128Hz at Pin 11 of U8. Note: For correct operation of the clock function, the battery must have a minimum charge of 2.75 volts and make complete contact with the battery socket clip. The chip select signal at Pin 6 of U2 can be tested by using a short Basic program to access Ports 2FCh or 2FEh. Access to Ports 2FF or 2FD should generate a pulse at Pin 11 of U1. Although the inputs to CMOS (U4) are well protected, a large discharge could damage the CMOS. Swapping the processor or clock chip with known good devices can help you isolate the problem.

 TANDY COMF	UTER PRODU	ств ——		
			**	

7/Clock/Calendar Component Side

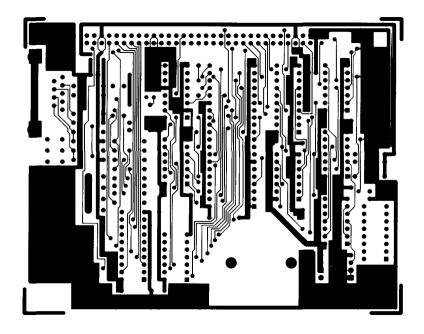


Figure 2

Clock/Calendar Solder Side

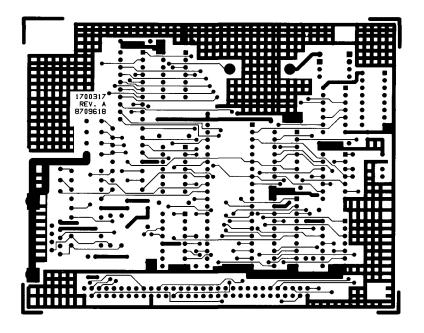


Figure 3

Clock/Calendar Silkscreen

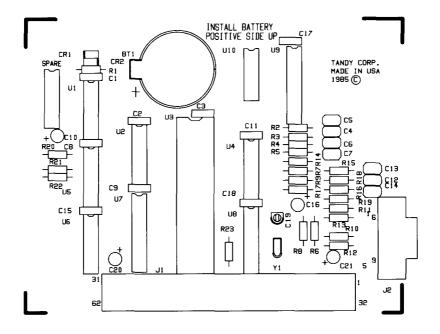
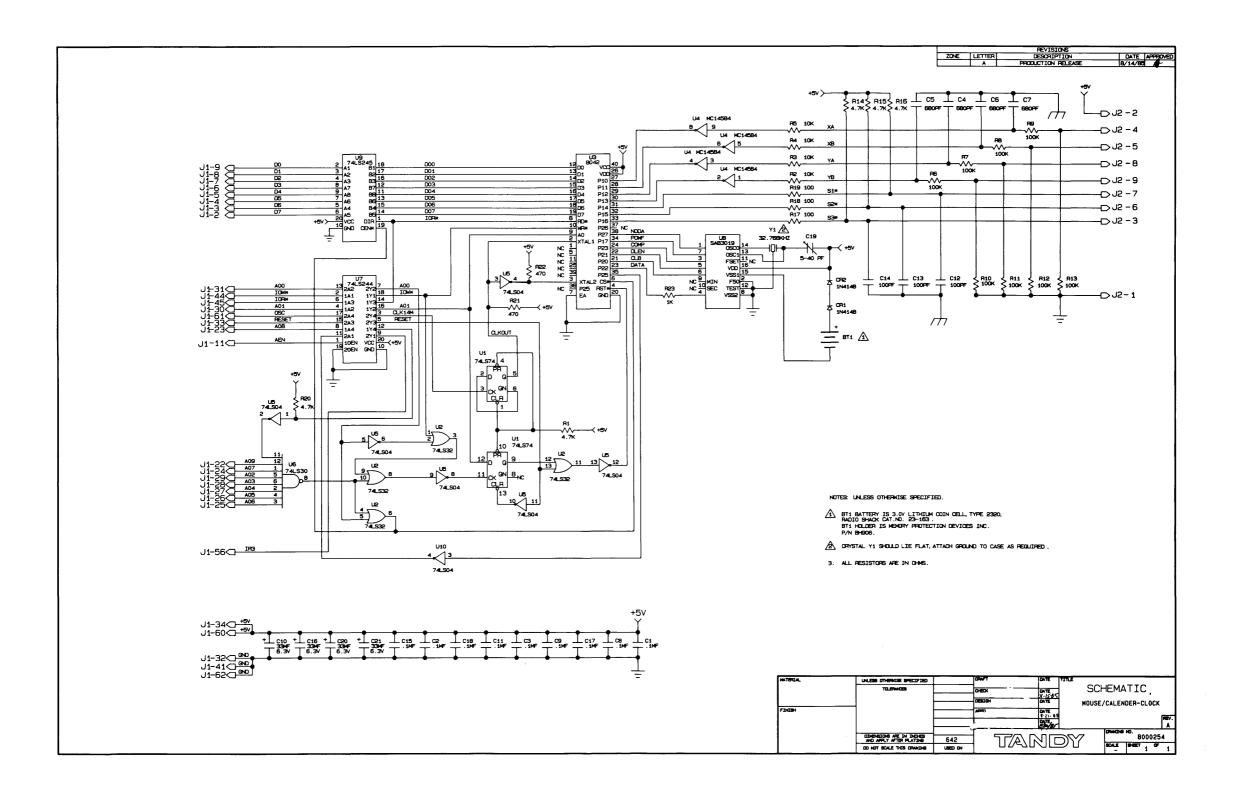



Figure 4

TANDY COMPUTER I	PRODUCTS	
	,	

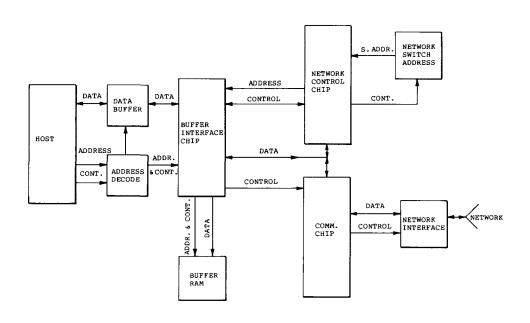
8/ Parts List Tandy 1000 Mouse/Clock/Calendar Catalog Number 25-1015

		DESCRIPTION	PART NO.
			:=======
	2 2 3	DIGI MOUSE CONT./COMBO BD. REV. A SCREW #4-40 X 1/4" ZINC SCREWS (PANEL) #4-40 X 3/8 NUTS, 4-40 STANDOFF, NYLON PCB STANDOFF, #4-40 HEX	AHD-2991 AHD-2222 AHD-7166 AHC-2429 AHC-2259
BT1 BT1	1	BATTERY 3.0V #23-16 SOCKET, PCB MOUNT	ACS-0103 AJ-7056
C1-3,8,9, 11,15,17, 18		CAPACITOR 0.1 MFD 50V MONO AXIAL	CC-104JJLA
C4-7 C10,16, 20,21	4 4	CAPACITOR 680 PFD 50V 20% CAPACITOR 33 MFD 6.3V TANTALUM RAD.	CC-681MJCP CC-336KBTP
C12-14 C19	3 1	CAPACITOR 100 PFD 5% 50V CAPACITOR 5-40 PFD TRIM	CC-101JJCP ACF-7370
CR1-2	2	DIODE 1N4148	DX-0022
J1 J2	1	RECEPTACLE CONNECTOR DB9 MALE RT. ANGLE (9-PIN) METAL SHELL, GROUNDING DETENTS AND STRAP, 4-40 THREADED INSERTS	AJ-4052 AJ-5062
R1,14-16, 20	5	RESISTOR 4.7K OHM 1/4 WATT 5%	N-0247EEC
R2-5 R6-13 R17-19 R21-22 R23	4 8 3 2 1	RESISTOR 10K OHM 1/4 WATT 5% RESISTOR 100K OHM 1/4 WATT 5% RESISTOR 100 OHM 1/4 WATT 5% RESISTOR 470 OHM 1/4 WATT 5% RESISTOR 1K OHM 1/4 WATT 5%	N-0281EEC N-0371EEC N-0132EEC N-0169EEC N-0196EEC

---- TANDY COMPUTER PRODUCTS -

SYMBOL	QTY.	DESCRIPTION	PART NO.
======			
U1	1	IC 74LS74 FLIP FLOP	MX-3808
U 2	1	IC 74LS32 QUAD 2-IN OR	MX-6183
U3	1	IC 8042 PROCESSOR	MX-6884
U3	1	SOCKET 40-PIN DIP	AJ-6580
U 4	1	IC MC14584 CMOS HEX INVERTER	MX-6207
U5,10	1	IC M74LS04P HEX INVERTER	AMX-3552
บ6	1	IC 74LS30 8-IN NAND	AMX-3556
7ט	1	IC 74LS244 OCTAL BUS TRANSCEIVER	AMX-3864
U8	1	IC SAB3019 CAL/CLK	MX-6178
U8	1	SOCKET 16-PIN DIP	AJ-6581
U9	1	IC 74LS245 OCTAL BUFFER	AMX-4470
Yl	1	CRYSTAL 32.768 KHz.	MX-1113
Υl	1	STAKING PIN (GROUND FOR CRYSTAL)	AHB-9682

TANDY COMPUTER PRODUCTS				
PLUS Network 4 Interface				
•				


_ TANDY COMPUTER PRODUCTS --

CONTENTS

Introduction 1
Theory of Operation
Installation Instructions 5
Parts List
P.C. Board
Schematic

INTRODUCTION

PLUS Network 4 is Local Area Network (LAN) system for communication between as many as 64 units, all operating asynchronously at a clock rate of 1 MHz. The 64 units are tied together by twisted pairs of wires. This network is interconnected through the Tandy 1000's 62-pin option slot. This interconnection is hardwired at the I/O addresses 0248-024F, and ties the Tandy 1000 to the CORVUS chip set which does most of the data formatting and recognizes the network protocol.

 TANDY COMPUTER	PRODUCTS —	

THEORY OF OPERATION

Address Decode

Address decoding uses ICs Ul5, Ul6, and Ul7 to decode I/O port addresses. The outputs are then gated with *IOW and *IOR signals. Read and write operations are as follows:

I/O Port	Read & Write Operation
248	Read Transporter Status Byte
249	Read RAM
24 A	Read the Counter Saver Byte
24B	Read RAM, Increment the Counter by 1.
248	Write the Counter High Byte
249	Write to the CAR
24 A	Write the Counter Low Byte
24 B	Write to RAM, Increment the Counter by 1.

Interrupt Operation

The PLUS Network 4 Interface board supports the following interrupts.

I/O Port	Interrupt Operation
24C 24D	Disable interrupts Clear current interrupt request
24E	Enable interrupts
	(All three operations can be done by reading or writing with meaningless
	data.)
24 F	Interrupt status
	Bit 4 set => interrupt pending
	Bit 5 set => interrupts disabled

Boot ROM /Buffer RAM

The PLUS Network 4 Interface board has a 2K-byte boot ROM (Ull) and 4K-bytes of buffer RAM (Ul, U2). ROM extends from host CPU address DF000 to address DFFFF and uses the first 1024 bytes of the 4K buffer RAM.

PLUS Network 4 Interface

The PLUS Network 4 Interface uses two components, (U10) which is a differential driver and receiver, and a transformer (T1), which acts as a filter. Note that since the input is a differential (as is the output) and the data is NRZI, which depends solely on transmission, the connector pins may be reversed on a unit without any effect to data transmission. The network interface is the lowest level of the network architecture.

Communications

The Comm. Chip, a CORVUS 68A54 Advanced Data Link Controller Chip, (U5) mainly encodes and decodes network data and monitors the network status for CRC errors, etc. This device constitutes the second level of the network architecture.

Network Control

The Network Control Chip, a CORVUS 6801 Chip, (U4) forms the network interface intelligence by monitoring the output of the Comm. chip (U5) and handling the header information. It handles the header information by communicating with the host side by a "command vector" in the buffered RAM and a message as to where to find the vector (sent via the C.A.R.). This device constitutes the third level of the network architecture.

Buffer Interface

The Buffer Interface Chip, a CORVUS 3131 Gate Array Chip, (U3) controls the timing and bus control for interfacing the users of the buffer RAM. It may be thought of as a two port memory controller, interfacing the host and the CORVUS 6801 chip with memory. In addition, the buffer interface chip also gates, times, and controls signals to each to facilitate their part of the interface.

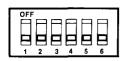
Installation Instructions

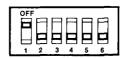
Introduction

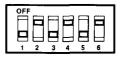
Adding the PLUS Network 4 Interface to your computer allows you to communicate with up to 64 units, all operating asynchronously at 1 MHz., via the Network 4 LAN (local area network).

The PLUS Network 4 Interface is readily installable by you. However, you can have the kit installed by the service technicians at your Radio Shack Service Center. Having service technicians install the kit not only ensures expert installation, but also enables them to quickly check that all the equipment is functioning properly.

Installation


Caution should be exercised in low humidity environments to prevent damage to electronic parts by static electricity being discharged through them. Discharge any built-up static electricity by touching a grounded metal object before proceeding further.


Warning: Turn off all equipment. Turn the power off and disconnect the power cord from the wall socket. If the computer is on, you could damage the central processing unit, as well as your PLUS Network 4 Interface board.


Before proceeding with the installation of the PLUS Network 4 Interface, be sure the kit contains the PLUS Network 4 Interface board, a terminal block and 2 star washers, 2 wing nuts, an alternate mounting bracket and 2 mounting screws, and 3 plastic standoffs (for the Tandy 1000 SX).

On the PLUS Network 4 Interface board locate the jumper at Jl which selects the interrupt that is to be used. Be sure the jumper is set to interrupt 3 (IR3) as this interrupt is recognized by the software.

Also on the PLUS Network 4 Interface board, find DIP Switch SWl (in the mounting bracket) which selects the station number. The settings on the DIP switches are a binary encoding of the numbers 0 to 63 (decimal). Each dip switch represents a digit in the 6 bit binary number. A switch set to down or "OFF" equals bit on or binary "l". Switch SWl-l is the least significant bit. See the switch setting examples in Figure 1.

Station 0

Station 1

Station 42

Figure 1.

Note: On each PLUS Network 4 Interface board set these SWl switches to a unique number of 0-63. Be sure to record the switch settings for each computer.

The software currently selects station 63 as the disk server, therefore, we recommend that the stations be set at 0-62.

If the PLUS Network 4 Interface board is going to be installed in the Tandy 1000 EX:

 Slide the cover on the top of the left side of the computer toward the back and remove it. See Figure 2.

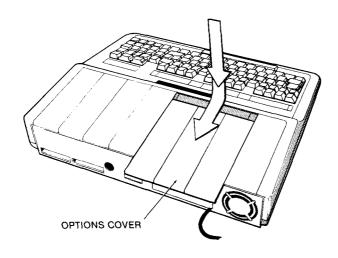


Figure 2.

- Remove the option slot panel. If necessary break off a panel for an unused expansion slot.
- 3. Carefully install the PLUS Network 4 Interface board in the empty expansion slot by aligning the pins and the connector and pressing the PLUS Network 4 Interface board down firmly but gently to seat it either in the main logic board or the lower connector of the Memory PLUS Expansion Adapter. See Figure 3.

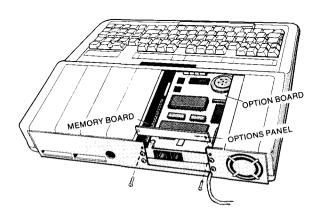
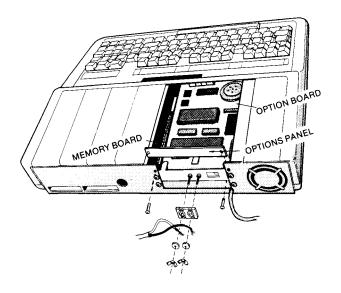



Figure 3.

- 4. Secure the metal mounting bracket on the PLUS Network 4 Interface board to the chassis with the screws provided.
- 5. Slide the terminal block over the 2 screws that protrude from the back of the computer, with the flat side of the block with 2 round indentations facing to the outside. See Figure 4.

Figure 4

- 6. Slip the 2 star washers over the protruding screws, with the teeth facing toward the terminal block. Also install the 2 wing nuts on the ends of the screws.
- 7. Install a strand of the network cable between the terminal block and the star washer on one of the protruding screws and tighten the wing nut. Do likewise for the other cable strand, protruding screw and wing nut.
- Insert the cover on the top of the left side of the computer and slide it forward toward the front. See Figure 5.

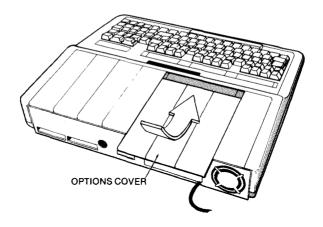
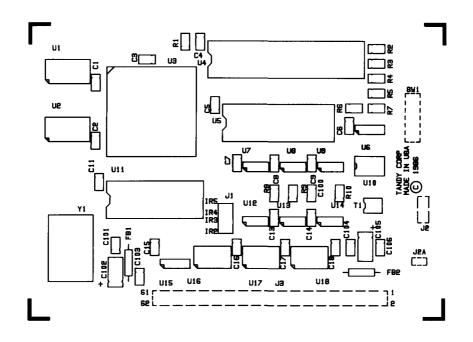


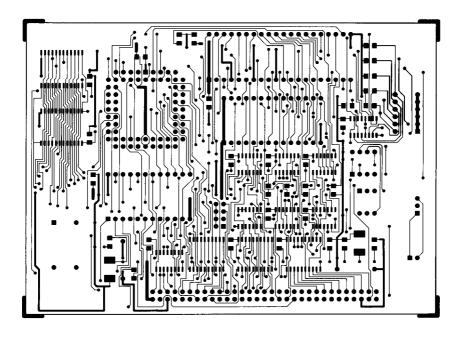
Figure 5.

The PLUS Network 4 Interface is now ready for use. See the PLUS Network 4 Interface Owner's Manual.

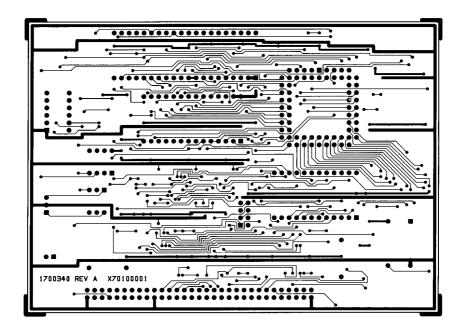

 TANDY COMPUTER PRODUCTS -	

TANDY COMPUTER PRODUCTS

TANDY 1000 Network SMT Parts List

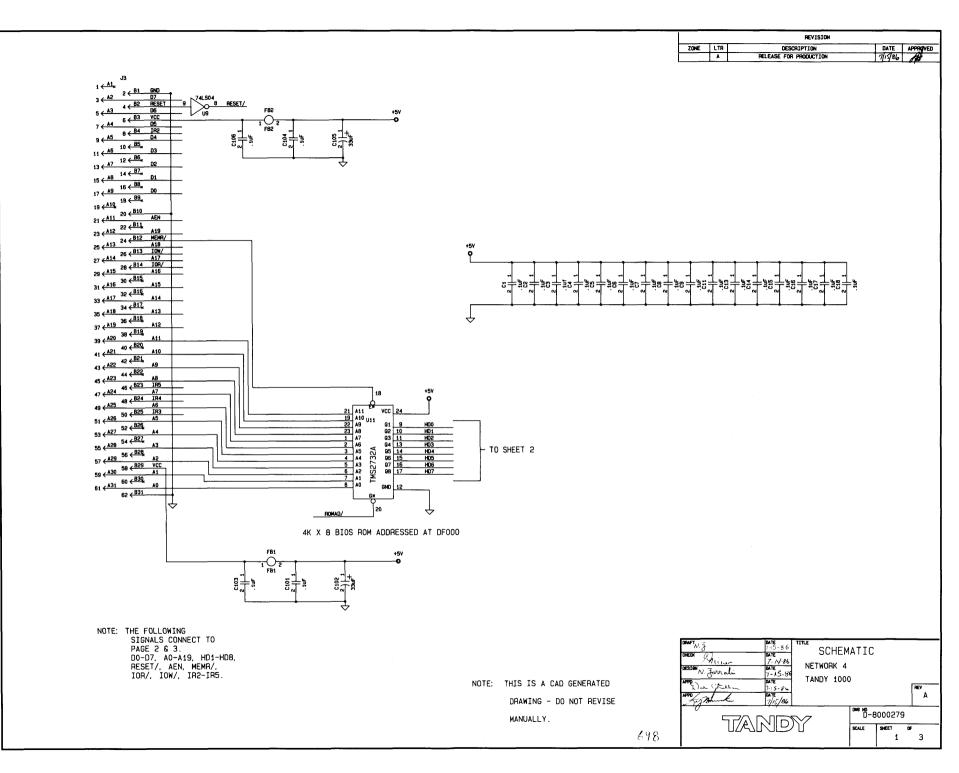

Symbol	Description	Part No.
==========	PC Board, Tl000 Network SMT	
Cl-9,11,13-18, 101,103,104,10		X37410341
C102,105 C100	Capacitor 33 MFD 10V Tant.Rad. Capacitor 220 PFD	X33633310 X30122241
FB1,2	Ferrite Bead	8419013
J1 J2 J3	Staking Pin Connector 2-Pos. Rt. Angle Connector, Recepticle 2 X 31	8529014 8519308 8519257
R1 R2-7 R8,10 R9	Resistor 3K Ohm 1/8W 5% Resistor 22K Ohm 1/8W 5% Resistor 2.2K Ohm 1/8W 5% Resistor 1K Ohm 1/8W 5%	X20323030 X20332230 X20322230 X20321030
SWl	Switch, 12-Pin 6 POS DIP Rt. Angle	8489087
Tl	Transformer	8417001
U1,2 U3 U4 U4 U5 U5 U5 U6 U8 U7 U9 U10 U11 U11 U12 U13 U14 U15 U15 U16,17 U18	SOWIC, 4016 2KX8 Static RAM IC, Corvus Chip Set #2 (3131) Socket 68-Pin IC, Corvus Chip Set #3 (MC6801) Socket 40-Pin IC Corvus Chip Set #1 (MC6854) Socket 28-Pin SOIC, 74LS367 SOIC, 74LS125 SOIC, 74LS08 SOIC, 74LS04 IC, SN75176 IC, TMS2732A 300NS Socket 24-Pin SOIC, 74LS21 SOIC, 74LS21 SOIC, 74LS32 SOIC, 74LS138 Socket 8-Pin SOWIC, 74LS138 Socket 8-Pin SOWIC, 74LS688 SOWIC, 74LS245	8509002 8075054 8509007 X02367000 X02125000 X02008000 X02004000 8050176 8040732 8509001 X02021000 X02032000 X02032000 X02138000 8509011 X02688000 X02245000
Yl	Oscillator, 10 MHz	8409041

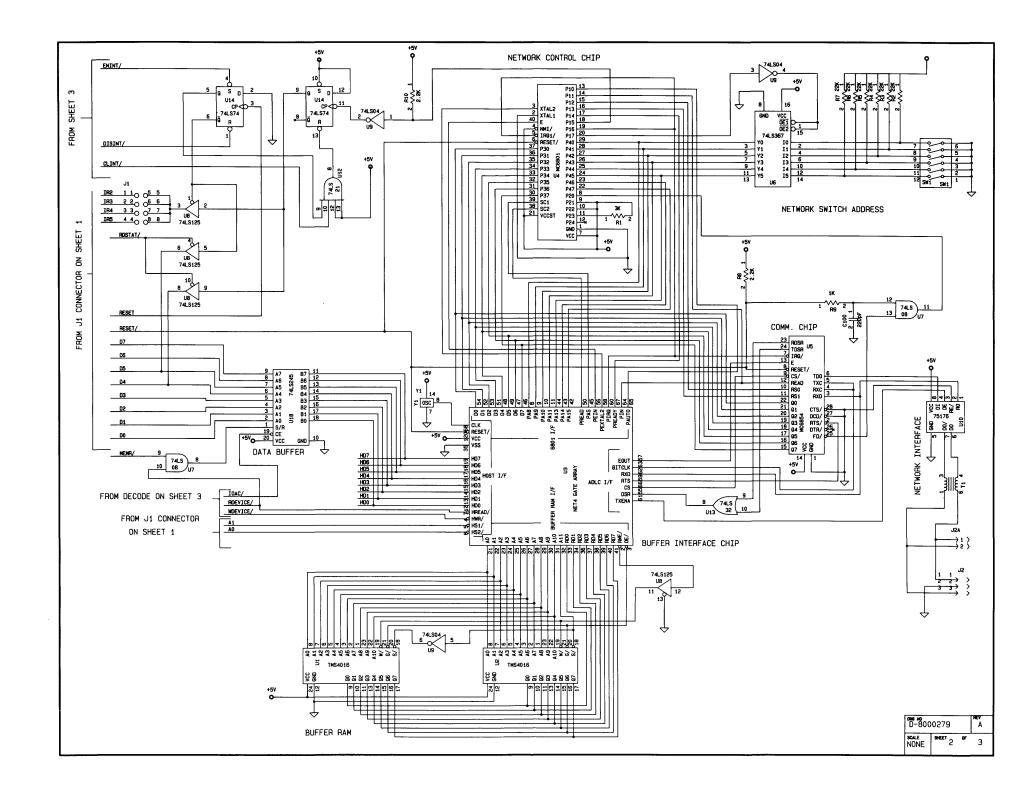
TANDY COMPUTER PRODUCTS				
manny 1000	Nationale CMM Posts 7 int			
TANDI 1000	Network SMT Parts List			
========				
Symbol	Description	Part No.		
=========				
	Bracket,	8729601		
	Bracket,	8729572		
	Standoff, Pastic	8590164		
	Scandoll, Pascic	0330104		


TANDY SYSTEMS DESIGN FILHWORK	FAB. SPEC. TSD-C262-2
PROJECT NO. 804 DATE 06/17/86 TITLE NETWORK DWG. NO. 1700340 REV. A	C/S SILKSCREEN
PART NO. X70100001 DESIGN GRID: x=.025 y=.025 DESIGNER: IGHIDD	
INSP	

PLUS Network 4 Interface Board - Silkscreen

TANDY SYSTEMS DESIGN FILMWORK	FAB. SPEC. TSD-C262-2
PROJECT NO.: 804 DATE: 06/17/86	
TITLE: NETWORK	
DWG. NO. 1700340 REV.A	
PART NO. • X70100001	LAYER 1 COMPONENT SIDE
DESIGN GRID: x=.025	
DESIGNER: GM DD	
INSP	


PLUS Network 4 Interface Board - Component Side



TANDY SYSTEMS DESIGN FILMWORK	FAB. SPEC.: TSD-C262-2
PROJECT NO. 804 DATE 06/17/86 TITLE NETWORK DWG	LAYER 2 SOLDER SIDE

PLUS Network 4 Interface Board - Solder Side

			_	
	- TANDY COMPL	ITER PRODUCTS	B	
¥.,				

D-800	A A		
SCALE	SHEET 3	OF	3

DEVICES

	RODUCTS

DEVICES CONTENTS

VIDEO CONTROLLER CHIP SPECIFICATION DMA CHIP SPECIFICATION PRINTER INTERFACE KEYBOARD INTERFACE TIMING CONTROL GENERATOR

 	TANDY COMP	UTER F	PRODUCTS	····
ATDEO	CONTROLLER	CHIP	SPECIFICATION	

VIDEO CONTROLLER CHIP SPECIFICATION CONTENTS

GENERAL DESCRIPTION	
BLOCK DIAGRAM	2
OPERATING MODES	3
PIN LIST	
LOGIC BLOCK DIAGRAM	
ELECTRICAL SPECIFICATIONS2	
PIMING3	
	•

VIDEO CONTROLLER CHIP SPECIFICATION

GENERAL DESCRIPTION

The Tandy 1000 video controller chip is designed to operate with three types of display devices: A standard TV using an RF modulator, a composite monitor, and an RGBI 200 line Color monitor. This custom controller chip implements all of the video logic for the Tandy 1000 plus most of the system decode logic. Figure 1 shows a block diagram of the controller chip.

The video display system is very flexible and can be programmed for a number of video modes. These modes use varying numbers of colors (2,4 or 16). These 16 colors are defined by combinations of the RGBI as shown in the color chart below and can be used for the foreground color or background color. If you are using a black and white monitor, these colors will appear as shades of gray. In addition, any 1 of the 16 colors or shades of gray can be used for the screen border.

I	R	G	В	Color
0	0	0	0	Black
0	0	0	1	Blue
) 0	0	1	0	Green
0	0	1	1	Cyan
0	1	0	0	Red
) 0	1	0	1	Magenta
0	1	1	0	Brown
0	1	1	1	Light Gray
1	0	0	0	Dark Gray
1	0	0	1	Light Blue
1	0	1	0	Light Green
1	0	1	1	Light Cyan
1	1	0	0	Pink
1	1	0	1	Light Magenta
ī	ī	ĺ	0	Yellow
1	ī	ī	ì	White

TABLE 1 AVAILABLE COLORS TABLE

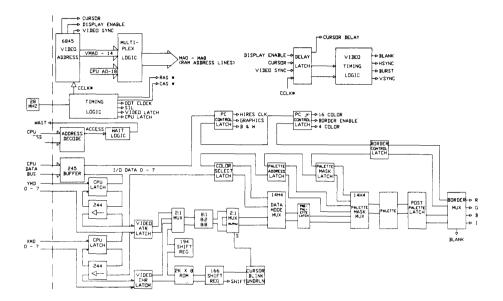


Figure $\mathbf{\mu}$ VIDEO CONTROLLER CHIP BLOCK DIAGRAM

OPERATING MODES

The operating modes supported by the Tandy 1000 video controller may be grouped in two categories: Alphanumeric and Graphic.

ALPHANUMERIC MODE

The Alphanumeric mode has two basic types of operation: 80 character by 25 rows, and 40 character by 25 rows. In both modes the characters are generated by a 256 character ROM. The character ROM is divided into the following groups:

- * 96 Standard ASCII characters
- * 48 Block Graphics characters
- * 64 Foreign Language/Greek characters
- * 16 Special Graphics characters.
- * 32 Word Processing/Scientific Notation characters

In both modes all characters are 7 dots wide by 7 dots high and are placed in an 8 dot wide by 8 or 9 dot high matrix. In both the 40x25 and the 80x25 modes, two bytes of data are used to define each character on the screen. The even address (0,2,4 etc.) is the character code and is used in addressing the character generating ROM. The odd address (1,3,5 etc.) is the attribute byte, that defines the foreground and the background color of the character. The following chart shows how the attribute byte controls colors.

		ATT	RIBUT	BYTE	3				
7	6	5	4		3	2	1	0	_
Ва	ckgro	und			Fo	regro	und		
I	R	G	В		I	R	G	В	
	R	G	В		I	R	G	В	_
 +			cts Bi						

Table 2 ALPHANUMERIC MODE ATTRIBUTE BYTE DEFINITION

* Writing a l in bit 5 of register 'H3D8 enables Blinking

GRAPHICS MODE

The Tandy 1000 Video Controller chip can be programmed for a variety of modes.

The Tandy 1000 Computer family supports the following Graphics Modes:

Œ					IBM	PCJR	IBM PC
Color	Medium Resolution	320	х	200		Х	х
Color	Medium Resolution	320	х	200		X	
Color	Low Resolution	160	х	200		X	
Color	High Resolution	640	х	200		X	Х
Color	High Resolution	640	х	200		X	
	Color Color Color	Color Medium Resolution Color Medium Resolution	Color Medium Resolution 320 Color Medium Resolution 320 Color Low Resolution 160 Color High Resolution 640	Color Medium Resolution 320 x Color Medium Resolution 320 x Color Low Resolution 160 x Color High Resolution 640 x	Color Medium Resolution 320 x 200 Color Medium Resolution 320 x 200 Color Low Resolution 160 x 200 Color High Resolution 640 x 200	Color Medium Resolution 320 x 200 Color Medium Resolution 320 x 200 Color Low Resolution 160 x 200 Color High Resolution 640 x 200	Color Medium Resolution 320 x 200 X Color Medium Resolution 320 x 200 X Color Low Resolution 160 x 200 X Color High Resolution 640 x 200 X

GRAPHICS MEMORY USAGE

####

* 200 line Graphics Memory uses either 2 or 4 banks of 8000 bytes. In either case, pixel information for the display's upper left corner is found at address 0000.

The 4 Color High Resolution 640 X 200 and

####	The 16 Color Medium Resouse 4 banks of 8000 byte	
(Hex)	<>	>
0000		00 Scans
1F3F		(0,4,8,,196)
2000		01 Scans
3F3F		(1,5,9,,197)
4000		10 Scans
5 F 3F		(2,6,10,,198)
6000		ll Scans
7F3F		(3,7,11,,199)

# # # # # # # # # # # #	The 4 Color The 16 Color	High Resolution 640 X 200 and Medium Resolution 640 X 200 and Low Resolution 640 X 200 nks of 8000 bytes as follows
(Hex)	<-80 Bytes->	
0000		Even Scans (0,,2,4,6,8,,198)
1F3F		(0,,2,4,0,0,,130)
2000		Odd Scans
3F3F		(1,3,5,7,9,,199)

2 COLOR HIGH RESOLUTION 640 X 200 GRAPHICS MODE

The 2 Color High Resolution 640 X 200 Graphics mode may require a high resolution monitor for proper operation. Available in the IBMPC and IBM PCjr, this mode has the following characteristics:

Contains a maximum of 200 rows of 640 PELs Can display 2 of 16 possible colors Requires 16K bytes of read/write memory Formats 8 PELs per byte for each byte in the following manner:

PAS	PAZ	PAI	PAU	PAS	PAZ	PAI	PAU
First	Second	Third	Fourth	Fifth	Sixth	Seventh	Eighth
Display							
PEL	PEL	PEL	PEL	PEL	PEL	PEL	PEL

4 COLOR HIGH RESOLUTION 640 X 200 GRAPHICS MODE

The 4 Color High Resolution 640 X 200 Graphics mode may require a high resolution monitor for proper operation. Only supported on the IBM PCjr, this mode has the following characteristics:

Contains a maximum of 200 rows of 640 PELs Can display 4 of 16 possible colors Each pixel selects 1 of 4 colors Requires 32K bytes of read/write memory Formats 8 PELs per two bytes (1 even byte and 1 odd byte) in the following manner:

	EV	EN BYTES	S						
	7	6	5	4	3	2	1	0	
	PA0	PA0	PA0	PA0	PA0	PA0	PA0	PA0	
_	First	Second	Third	Fourth	Fifth	Sixth	Seventh	Eighth	Ī
	Display	Display	Display	Display	Display	Display	Display	Display	
	PEL	PEL	PEL	PEL	PEL	PEL	PEL	PEL	
							· ——- ·	·	
	PAl	PAl	PAl	PAl	PAl	PAl	PAl	PAl	
	7	6	5	4	3	2	1	0	

ODD BYTES

16 COLOR MEDIUM RESOLUTION 320 X 200 GRAPHICS MODE

The 16 Color Medium Resolution 320 X 200 Graphics mode works with all types of display devices. This mode is available in the IBM PCjr only and has the following characteristics:

Contains a maximum of 200 rows of 320 PELs Can display 16 of 16 possible colors Each pixel selects 1 of 16 colors Requires 32K bytes of read/write memory Formats 2 PELs per byte in the following manner:

7	6	5	4	3	2	l	0
PA3	PA2	PAl	PAO	PA3	PA2	PAl	PA0
		rst splay L			Seco Dis PEL	ond olay	

16 COLOR LOW RESOLUTION 160 X 200 GRAPHICS MODE

The 16 Color Low Resolution 160 X 200 Graphics mode works with all types of display devices. This mode is available in the IBM PCjr only, with the following characteristics:

Contains a maximum of 200 rows of 160 PELs Can display 16 of 16 possible colors Each pixel selects 1 of 16 colors Requires 16K bytes of read/write memory Formats 2 PELs per byte in the following manner:

P	7	6	5	4	3	2	l	0
	A3	PA2	PAl	PAO	PA3	PA2	PAl	PA0
			rst splay L			Seco Dis PEL	ond play	

4 COLOR MEDIUM RESOLUTION 320 X 200 GRAPHICS MODE

The 4 Color Medium Resolution 320 X 200 Graphics mode works with all types of display devices. It is available in the IBM PC and PCjr. This mode has the following characteristics:

Contains a maximum of 200 rows of 320 PELs Can display 4 of 16 possible colors Each pixel selects 1 of 4 colors Requires 16K bytes of read/write memory Formats 4 PELs per byte in the following manner:

7	6	5	4	3	2	l	0
PAl	PAO	PAl	PAO	PAl	PA0	PAl	PA0
Fir Dis PEI	play	Dis	Second Display PEL		ird splay L	Fou Dis PEL	

VIDEO MEMORY MAP AND GRAPHICS USAGE

Hex Address	Register
3D0	Not Used
3D1	Not Used
3D2	Not Used
3D3	Not Used
3D4	G845 Address Register
3D5	G845 Data Register
3D6	Not Used
3D7	Not Used
3D8	Mode Select Register
3D9	Color Select Register
3DA	Video Array Address & Status
3DB	Clear Light Pen Latch
3DC	Set Light Pen Latch
3DD	Extended RAM Page Register
3DE	Video Array Data
3DF	CRT Processor Page Register

VIDEO ARRAY REGISTERS

The following registers can be accessed by writing their Hex Address to 3DA and their Data to 3DE $\,$

Hex Address	Video Array Register
01	Palette Mask
02	Border Color
03	Mode Control
10-1F	Palette Registers

ARRAY PALETTE MASK REGISTER

Bit Programming

01	12 44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ite Only_
MSK[3]	Palette Mask 3	
MSK[2]	Palette Mask 2	
MSK[1]	Palette Mask 1	
MSK[0]	Palette Mask 0	
to be 0 re be used to	0-3 are 0, they force the appropriate palette address gardless of the incoming color information. This can make some information in memory a 'don't care' until it is requested.	

TANDY	 **	

ARRAY BORDER COLOR

Hex Addres	s Array Register 7 6 5 4 3 2 1 0 Notes
02	Border Color X X 0 X
	Reserved = 0
BORI	I (Intensity) Border Color Select_
BORR	R (Red) Border Color Select
BORG	G (Green) Border Color Select
BORB	B (Blue) Border Color Select
as one	of l6 colors, as listed in Table l "Available Table" at the beginning of this section.

ARRAY MODE CONTROL REGISTER

Bit Programming

Hex Address	Array Register	
03	Mode Control X X 0 X Write Only	
NVDM	Set to 1 for 640x200 secondary pixel organization	
CleCor	Set to 1 for 16 Color Modes	
C4COLHR	Set to 1 for 4 Color 640x200 Mode	
BORENB	Enables the border color register For PC compatibility, this bit should be 0. For PCjr compatibility, this bit should be 1. Reserved for future implementations. Must always be set to zero.	

ARRAY PALETTE REGISTERS

There are sixteen 4 bit wide palette registers implemented by a 16x4 bit RAM. These registers are 'write' only; they cannot be 'read'. Their address in the Video Array are from hex 10 to 1F. They can be used to redefine any color.

To load the palette, write the hex address to the Video Array register at 3DA. Then, the new palette color is written to 3DE.

Palette address hex 10 is accessed whenever the color code from memory is a hex 0, address hex 11 is accessed whenever the color code from memory is a hex 1, and so forth. A description of the color codes is in Table 1 "Available Colors Table" at the beginning of this section.

Note: The palette address can be 'masked' by using the palette mask register.

The following is a description of the register's bit functions:

Bit Number	Function
0	Blue
1	Green
2	Red
3	Intensity

When loading the palette, the video is 'disabled' and the color viewed on the screen is the data contained in the register being addressed by the processor.

When the program has completed loading the palette, it must change the hex address to some address less than hex 10 for video to be 'enabled' again.

If a programmer does not wish a user to see the adverse effects of loading the palette, the palette should be loaded during the vertical retrace time. The program must modify the palette and change the address to less than hex 10 within the vertical retrace time. A vertical retrace interrupt and a status bit are provided to facilitate this procedure.

In two color modes, the palette is defined by using one bit (PAO), with the following logic:

PALETTE ADDRESS BIT

=======================================	
PA0	Function
=======================================	
0	Palette Register 0
1	Palette Register l

In four color modes, the palette is defined by using two bits (PAl and PAO), with the following logic:

PALETTE ADDRESS BITS

======	=======	
PAl	PA0	Function
=====	========	
0	0	Palette Register 0
0	1	Palette Register l
1	0	Palette Register 2
1	1	Palette Register 3
=====	.========	

In sixteen color modes, the palette is defined by using four bits (PA3,PA2,PA1 and PA0), with the following logic:

PALETTE ADDRESS BITS

====		=====	======	
PA3	PA2	PAl	PA0	Function
(I)	(R)	(G)	(B)	
====		=====		
0	0	0	0	Palette Register 0
0	0	0	1	Palette Register l
0	0	1	0	Palette Register 2
0	0	1	1	Palette Register 3
0	1	0	0	Palette Register 4
0	1	0	1	Palette Register 5
0	1	1	0	Palette Register 6
0	1	1	1	Palette Register 7
1	0	0	0	Palette Register 8
1	0	0	1	Palette Register 9
1	0	1	0	Palette Register 10
1	0	1	1	Palette Register ll
1	1	0	0	Palette Register 12
1	1	0	1	Palette Register 13
1	1	1	0	Palette Register 14
1	1	1	1	Palette Register 15
====	======	=====		

DETAILED I/O REGISTER INFORMATION

Bit Programming

Hex Address	Register	7 6 5 4 3 2 1 0	Notes
3D4	6845 Address Register		Write Only Addresses 1 of 18 6845 Registers
Hex Address	Register	7 6 5 4 3 2 1 0	Notes
3D5	6845 Data Register	-	WriteOnly Data placed in 1 of 18 6845 Registers

Bit Programming

Hey Address	Register 7 6 5 4 3 2 1 0 Notes
Hex Address	
3D8	Mode Register X X With Only Only
ENABLINKCR	Alpha Blink Enable.A l selects blink if attribute bit 7 is set. A 0 selects 16 back-ground colors. A 1 selects 8 background colors.
HRESAD	640 Dot Graphics. A l selects 640 X 200 (2 or 4 Color)
VIDENBCR	Video Enable. A l enables the Video display.
BW	Black & White Select. Selects B&W or color mode for TV or composite monitors. In RGB monitors, a different color palette is selected by this bit in 320 x 200 4 Col Mode. This bit will have no other effect on RGB operation
GRPH	Graphics Select. A 0 selects Alpha- numeric Mode. A 1 selects Graphics Mode.
HRESCK	High Resolution Dot Clock. A 0 selects the lower speed for 40 character text or low resolution graphics mode. A 1 selects the higher speed for 80 character text or high resolution graphics mode.

Hex Address	Register 7 6 5 4 3 2 1 0	Notes
3D9	Color Select X X X	Vrite Only
COLSEL	320 X 200 4 Color Blue	
BACKGROUNDI	Alpha Background/320 Graphics Foreground Intensity. When Blink is enabled in alpha mode, this bit is used to select intensity. In the 320 X 200 4 color mode, it selects the intensity of the foreground	
OVERSCANI	In Alpha mode screen Border intensity In 320x200 4 Col Background intensity if PA0=PA1=0 In 640x200 2 Col Foreground intensity	
OVERSCANR	In Alpha mode screen Border Red In 320x200 4 Col Background Red if PA0=PA1=0 In 640x200 2 Col Foreground Red	
OVERSCANG	In Alpha mode screen Border Green In 320x200 4 Col Background Green if PA0=PA1=0 In 640x200 2 Col Foreground Green	
OVERSCANB	In Alpha mode screen Border Blue In 320x200 4 Col Background Blue if PA0=PA1=0 In 640x200 2 Col Foreground Blue	
l	l	l

Hex Address	Register 7 6 5 4 3 2 1 0 Notes	Ī
3DA	Video/Light Pen X X X X	_
CVSYNC	When 1 Vertical retrace is active	1
LPSWB	Light Pen Switch Status When 0 Light Pen Switch is on. Switch not latched or debounced.	
LPSTRB	When I Light Pen input has positive going edge and has set Light Pen trigger. When this trigger is low during a system power on, it may be cleared by performing an I/O command to address 3DB. No specific data is required.	
DISPENB	When 0 Display is active When 1 Video is not displayed	

Hex Address	Register		7	6	5	4	3	2	1	0	[Notes
3DC	Set Light Pen Latch		Х	X	X	X	X	X	X	 X 	- · 	Write
3DB	Clear Light Pen Latch		<u> </u>	<u>x</u>	X	X	X	X	x	<u>x</u>	_	Write Only
	Data Byte has no effect. Before the 6845 can read the light pen again, the latch at 3DB must be cleared											

Hex Address	Register	Notes				
3DD	Extended Ram X X X X X Page Reg	Write Only				
PG18 (#)	CPU Page Address 18					
PG17	CPU Page Address 17	All bits				
VPG18 (#)	Video Page Address 18	cleared				
VPG17	Video Page Address 17	by a				
		System				
		Reset				
EXTADR	Extended Addressing Mode for 256K systems					
Note (#) Not implemented in current design but reserved for future implementations						

Hex Address	Register 7 6 5 4 3 2 1 0	Notes						
3DF	CRT/Processor	Write Only						
ADRMl(**)	Video Address Mode 1 with Reg 3DD bit0 selects Video Address supplied to RAM							
ADRM0(**)	Video Address Mode 0 with Reg 3DD bit0 selects Video Address supplied to RAM							
	Processor Page 2 Processor Page 1 Processor Page 0							
CRTPG2 CRTPG1 CRTPG0	CRT Page 2 CRT Page 1 CRT Page 0							
select the	The processor page bits are combined with the CPU address to select the 32K segment of memory accessed at B8000. If an odd page number is selected, the window is reduced to 16K.							
The CRT Page bits select the 16K Page used by the Video. In 32K modes bit 0 is ignored.								
Note (**): These bits are used in conjunction with Reg 3DD bit 0 to select the Video addresses to the RAM. See the Video Memory Addressing Modes Table. Also the Graphics control bit 3D8 bit 1 (GRPH) will force the same condition as setting ADRM0.								

Hex Address	Register 7 6 5 4 3 2 1 0	Notes
00A0-00A7	NMI Mask	Write Only
NMIEN	Enable Non Maskable Interrupt	
PORTMD	Enable 256K Video RAM	All bits
мсз	Memory Configuration 3	cleared
MC2	Memory Configuration 2	by a
MCl	Memory Configuration 1	System
XTERNVID	Disables all video Accesses to Video Memory at B8000-BFFFF and video I/O locations 3D0-3D7	Reset

6845 PROGRAMMING TABLE FOR ALL MODES

3										
- 1	*	REGISTER	40x25	80X25	160x200 16 Col	640X200 4 Col				
i			ALPHANUM	ALPHANUM	320X200 4 Col	320X200 16 Col				
					640X200 2 Col					
1	====				28353888888					
ļ	o l	Horizontal Total	38 (56)	71 (113)	38 (56)	71 (113)				
1	i	Horiz, Displayed	28 (40)		28 (40)	50 (80)				
	2	Horiz, Sync, Pos	2D (45)	5A (90)	2D (45)	5A (90)				
- 1	3	Horiz. Sync. Width	08 (8)	OE (14)	08 (8)	OE (14)				
1	4	Vertical Total-1	1C (28)	1C (28)	7F (127)	3F (63)				
1	5	Vert. Total Adjust	01 (1)	01 (1)	06 (6)	06 (6)				
ı	6	Vertic. Displayed	19 (25)	19 (25)	64 (100)	32 (50)				
1	7	Vert. Sync Pos.	1A (26)	1A (26)	70 (112)	38 (56)				
- 1	8	Interlace Mode	02 (2)	02 (2)	02 (2)	02 (2)				
ı	9	MaxScanLineAdd -1	08 (8)	08 (8)	01 (1)	03 (3)				
	10	Cursor Start	06 (6)	06 (6)	06 (6)	06 (6)				
1	11	Cursor End	07 (7)	07 (7)	07 (7)	07 (7)				
	12	Start Addresss High	00 (0)	00 (0)	00 (0)	(00 (0)				
	13	StartAddress Low	00 (0)	00 (0)	00 (0)	00 (0)				
	j		j i							

MODE SELECTION SUMMARY

'H3D8	'H3D8	'H3DE REG3	'H3DE REG3	H3DE REG3	'H3D8	'H3DD	'H3DF	'H3DF
BIT 0	BIT 4	BIT 3	BIT 4	BIT 5	BIT 1	BIT 0	BIT 7	BIT 6
HRESCK	HRESAD	C4COLHR	Clecor	NVDM	GRPH	EXTADR	ADRM1	ADRM0
=====			========		=====	=====		****
0	. 0	0	0	0	0	0	0	0
1	0	0	O	0	0	0	0	0
0	0	0	1	0	1	0	0	1 1
U	0	0	0	0	1	0	0	1 1
1	0	0	1	0	1	0 .	1	1 1
0	1	0	0	0	1	0	0	1
1	1	1	0	0	1	0	1	1
1	BIT 0 HRESCK	BIT 0 BIT 4 HRESCK HRESAD	BIT 0 BIT 4 BIT 3 RESCK HRESAD C4COLHR	BIT 0 BIT 4 BIT 3 BIT 4 HRESCK HRESAD C4COLHR C16COL	BIT 0 BIT 4 BIT 3 BIT 4 BIT 5 HRESCK HRESAD C4COLHR C16COL NVDM	BIT 0 BIT 4 BIT 3 BIT 4 BIT 5 BIT 1 HRESCK HRESAD C4COLHR C16COL NVDM GRPH	BIT 0 BIT 4 BIT 3 BIT 4 BIT 5 BIT 1 BIT 0 RESCK HRESAD C4COLHR C16COL NVDM GRPH EXTADR	BIT 0 BIT 4 BIT 3 BIT 4 BIT 5 BIT 1 BIT 0 BIT 7 HRESCK HRESAD C4COLHR C16COL NVDM GRPH EXTADR ADRM1

VIDEO/SYSTEM MEMORY ADDRESS MAP

'HOAO BITS 4 3 2 1	VIDEO/SYSTEM MEMORY START ADDRESS	VIDEO/SYSTEM MEMORY LENGTH	VIDEO/SYSTEM MEMORY ADDRESS RANGE
0 0 0 0	0 0 0 0 0	128K	0 0 0 0 0 - 1 F F F F
0 0 0 1	2 0 0 0 0	128K	20000-3FFFF
0 0 1 0	4 0 0 0 0	128K	40000-5FFF
0 0 1 1	60000	128K	60000-7FFF
0 1 0 0	80000	128K	8 U O O O - 9 F F F F
1 0 0 1	0 0 0 0 0	256K	0 0 0 0 0 - 3 F F F F
1 0 1 0	2 0 0 0 0	256К	20000-5FFF
1 0 1 1	4 0 0 0 0	256К	4 0 0 0 0 - 7 F F F
1 1 0 0	6 0 0 0 0	256K	60000-9FFFF
l			l

VIDEO MEMORY ADDRESSING MODES

'H3DD		'H3DF	VIDEO MEMORY ORGANIZATION							
BIT 0			(128)							
EXTADR	ADRM1	ADRM0								
=====	=====	=====	***************************************							
0	0	0	1 16K Segment of Memory (8 Pages)							
] 0	0	1	2 8K Segments of Memory (8 Pages) Switched on RA[0]							
0	1	0	2 16K Segments of Memory (4 Pages) Switched on RA[0]							
0	1	1	4 8K Segments of Memory (4 Pages) Switched on RA[0],RA[1]							
] 1]	0	0	1 32K Segment of Memory (4 Pages)							
1	0	1	2 32K Segments of Memory (2 Pages) Switched on RA[0]							
			Por 9 Dago Modes Change 2:01 select the Video Dago							
1			For 8 Page Modes CRTPG[2:0] select the Video Page							
1			For 4 Page Modes CRTPG[2:1] select the Video Page							
l			For 2 Page Modes CRTPG[2] select the Video Page							

OTHER CHIP FUNCTIONS

In addition to the video controller functions, the Tandy 1000 video controller chip also provides most of the system address decode functions. These decode and chip select functions are described as follows:

A, B, C outputs are encoded device select lines and are connected to an external LS138.

CBA	IOMB	BA0-1	5 (HEX)	DESCRIPTION
1 1 1		NONE	OF BELOW	
1 1 0		1 0	020-0027	INTCSB
101		1 0	040-0047	TMRCSB
1 0 0		1 0	060-0067	PIOCSB
0 1 1		1 0:	200-0207	JOYSTKCSB
0 1 0		1 0	0C0-00C7	SNDCSB
0 0 1		1 0:	3F0-03F7	FDCCSB
0 0 0		1 0	378-037F	PRINTCSB

The output signal ROMIOSELB is the enable signal for an LS245 that controls all of the data flow to devices on the main logic board. This signal is active low and will be activated for any of the following conditions:

- 1. Video/System Memory Read or Write
- 2. Video Access at B8000-BFFFF
- 3. Rom Access at F0000-FFFFF
- 4. Video I/O access at 03D0-03DF
- 5. I/O access to any of the following addresses:

0040-0047 0060-0067 00A0-00A7 00C0-00C7 0200-0207 0378-037F 03F0-03F7

PIN LIST

12 13 14 15 16	Video Controller Chip	74 73 72 71
17 18 19 20 21	84 PIN PLCC #2684	69 68 67 66 65
22 23 24 25 26 27		64 63 62 61 60
28 29 30 31 32		58 57 56 55 54

DESCRIPTION OF EACH PIN FUNCTION

PIN#	PIN NAME	TYPE	DESCRIPTION
1	vss	Ground	Ground
2	XMD[2]	Input/Output	External Memory Data I/O Bank 0
3	XMD[3]	Input/Output	External Memory Data I/O Bank 0
4	XMD[4]	Input/Output	External Memory Data I/O Bank 0
5	XMD[5]	Input/Output	External Memory Data I/O Bank 0
6	XMD[6]	Input/Output	External Memory Data I/O Bank 0
7	XMD[7]	Input/Output	External Memory Data I/O Bank 0
8	YMD[0]	Input/Output	External Memory Data I/O Bank 1
9	YMD[1]	Input/Output	External Memory Data I/O Bank l
10	YMD[2]	Input/Output	External Memory Data I/O Bank l
11	YMD[3]	Input/Output	External Memory Data I/O Bank 1
12	YMD[4]	Input/Output	External Memory Data I/O Bank l
13	YMD[5]	Input/Output	External Memory Data I/O Bank 1
14	YMD[6]	Input/Output	External Memory Data I/O Bank 1
15	YMD[7]	Input/Output	External Memory Data I/O Bank 1
16 17	RFSHB	Input	Memory Refresh Strobe Input
18	MWE1B	Output	Ram Bank 1 Write Enable Signal Ram Bank 0 Write Enable Signal
19	MWE0B RASB	Output	Ram Row Address Strobe
20	CASB	Output Output	Ram Column Address Strobe
21	BMEMRB	Input	CPU Memory Read Strobe
22	VDD	Power	5 Volts Supply
23	BMEMWB	Input	CPU Memory Write Strobe
24	CK28M	Clock	28.63636 Mhz Clock Input
25	-	Output(OpenDrain	
26	SYSRSTB	Input	System Reset
27	IOMB	Input	CPU I/O-Memory Signal (Memory ->1,
		•	1/0 -> 0)
28	A	Output	Encoded Peripheral Select Line
29	В	Output	Encoded Peripheral Select Line
30	С	Output	Encoded Peripheral Select Line
31	IOMEMSELB	~	External Buffer Enable
32	NMIEN	Output	Nonmaskable Interrupt Enable
33	BIORB	Input	CPU I/O Read Strobe
34	BIOWB	Input	CPU I/O Write Strobe
35	LPIN	Input	Light Pen Signal Input
36	LPSWB	Input	Light Pen Switch Input
37	OUTVSYNC	Output	Vertical Sync Output
38	OUTHSYNC	Output	Horizontal Sync Output
39	COMPCOLOR	-	Composite Color Signal
40	COMPSYNC	Output	Composite Sync Signal
41	OUTI	Output	Intensity Out
42 43	OUTR	Output	Red Video Out
43	VSSI	Ground	Ground Plus Mides Out /Managhrams Datalogk
44	OUTB	Output	Blue Video Out/Monochrome Dotclock

```
45
       OUTG
                  Output
                                     Green Video Out/Monochrome Video
46
       BA[19]
                  Input
                                     CPU Address Line
47
       BA[181
                  Input
                                     CPU Address Line
48
       BA[17]
                  Input
                                   CPU Address Line
49
       BA[16]
                  Input
                                   CPU Address Line
                                 CPU Address Line
CPU Address Line
CPU Address Line
CPU Address Line
CPU Address Line
CPU Address Line
CPU Address Line
CPU Address Line
50
      BA[157
                  Input
51
      BA[14]
                  Input
52
      BA[13]
                  Input
53
       BA[12]
                  Input
54
                  Input
       BA[11]
55
       BA[10]
                  Input
56
      BA[9]
                  Input
57
      BA[8]
                  Input
                                   CPU Address Line
58
                                    CPU Address Line
      BA[7]
                  Input
                                  CPU Address Line
CPU Address Line
CPU Address Line
59
      BA[6]
                  Input
60
      BA[5]
                  Input
61
      BA[4]
                  Input
62
      BA[3]
                                   CPU Address Line
                  Input
63
      BA[2]
                  Input
                                   CPU Address Line
64
      BA[1]
                  Input
                                    CPU Address Line
      BA[0]
65
                  Input
                                     CPU Address Line
                  Input/Output
                                     CPU Data I/O
CPU Data I/O
66
      DB[7]
                  Input/Output
67
      DB[6]
68
      DB[5]
                  Input/Output
                                     CPU Data I/O
69
      DB[4]
                                     CPU Data I/O
                  Input/Output
70
      DB[3]
                  Input/Output
                                     CPU Data I/O
71
      DB[2]
                  Input/Output
                                     CPU Data I/O
72
                                     CPU Data I/O
      DB[1]
                  Input/Output
                                     CPU Data I/O
73
      DB[0]
                  Input/Output
74
      MA[0]
                  Output
                                     Memory Address Line
      MA[1]
75
                                     Memory Address Line
                  Output
76
      MA[2]
                  Output
                                     Memory Address Line
77
      MAI31
                                     Memory Address Line
                  Output
78
      MA[4]
                                     Memory Address Line
                  Output
79
      MA[5]
                  Output
                                    Memory Address Line
80
      MA[6]
                  Output
                                    Memory Address Line
81
      MA[7]
                  Output
                                     Memory Address Line
82
      BANKSL
                  Output
                                     Memory Address Line
                  Input/Output
Input/Output
83
      XMD[0]
                                     External Memory Data I/O Bank 0
84
      XMD[1]
                                    External Memory Data I/O Bank 0
```

LOGIC BLOCK DIAGRAM

TEST MODES AND THEIR OPERATIONS

There are four Test Modes that the chip can be placed into to make the part easily and efficiently testable. All these Test Modes use conditions that can never occur in a System environment, therefore avoiding accidental entry in Test Mode. All the test modes are entered when both MEMRB and MEMWB are active. The selection of the different tests is done by an additional decode on some bits of the BA lines according to the following chart:

mnom	ENABLED WHEN						OPERATION PERFORMED
MODE	BMEMRB	BMEMWB	BA15	BA14	BA13	BA12	
1	0	0	1	x	x	х	Pinout the 6845 Megacell on external pins and/or Start Self Test Rom. While the testing of the Megacell is in progress, the Rom is performing a signature analysis. At the end of 4500 clocks, a PASS/FAIL bit is set, if the Self Test was successful.
2	0	0	0	1	х	x	Enable a Software Reset on the 6845.
3	0	0	0	x	1	x	Clear the Clock generators & blink counter to start from a known condition.
4	0	0	0	x	x	0/1	A 1 writes a bit that forces Display Enable constantly. A 0 removes forced Display Enable. Cleared by SYSRSTB.

TEST MODE 1 PINOUT THAT EMULATES THE 6845 STANDARD PRODUCT

The following signals of the Megacell are available on the following pins in Test Mode 1:

6845 SIGNAL

TAOUITA SIGNAL

RESETB	SYSRSTB
LPSTB	LPIN
MA[7:0]	MA[7:0]
MA[8]	BANKSL
MA[9]	MWELB
MA[10]	ROMIOSELB
MA[11]	A
MA[12]	В
MA[13]	С
DE	COMPSYNC
CURSOR	COMPCOLOR
CLK	IOMB (See Note ***)
RNW	BIOWB
E	RFSHB
RS	BA[0]
CSB	LPSWB
DB[7:0]	DB[7:0]
RA[0]	RASB
RA[1]	CASB
RA[2]	OUTR
RA[3]	OUTI
RA[4]	MWE0B
HS	OUTHSYNC
VS	OUTVSYNC
· -	

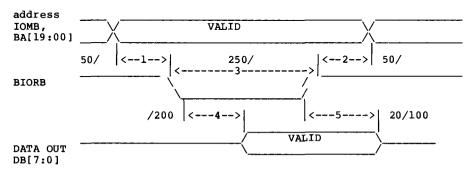
Also the Pass/Fail bit for the Self Test Rom can be tested on the OUTG output pin during TEST MODE 1. Note that at least 4,500 clocks must be given in Test Mode 1 before checking the Pass/Fail bit. These clock times could be used to exercise the 6845 as a standard part according to the previous pinout.

Note***: IOMB is in fact CLK Bar so in order to test it using the standard part's test program, there is a need to invert the clock coming in the Test program.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAX RATINGS (NON-OPERATING, VSS=0v)

ADDODUTE MAR RATINGD (N	OH OI BRAITING	* *55-	• • •			
STORAGE TEMPERAT VOLTAGE ON ANY P				UNITS DEGREES	c.	
W.R.T.GROUND	-0.5		7.0	VOLTS		
OPERATING ELECTRICAL SP	ECIFICATIONS					
OPERATING AMBIEN AIR TEMP. RANGE			MAX 70	UNITS DEGREES	c.	
POWER SUPPLIES VCC SUPPLY VOLTA VSS SUPPLY VOLTA				VOLTS VOLTS		
ICC SUPPLY CURRE	NT	20	35	MILLIA	MPS	
TOTAL POWER DISS (INCLUDE LOADING OUTPUTS)		100	175	WILLIW	ATTS	
LEAKAGE CURRENT ALL INPUTS AND TRISTATE OUTPUT				MICROAM	PS	
INPUT VOLTAGES LOGIC "0" (Vil) ALL INPUTS			0.8	VOLTS		
LOGIC "1" (Vih) ALL INPUTS	2.0			VOLTS		
OUTPUT VOLTAGES	CURRENT LOAD	ING	MIN	TYP	MAX	UNITS
LOGIC "0" (Vol) ALL OUTPUTS	2.0 MA				0.4	VOLTS
LOGIC"1" (Voh) ALL OUTPUTS	0.4 MA		2.4			VOLTS
INPUT CAPACITANC ALL INPUTS	E		MIN	TYP		PICOFARADS

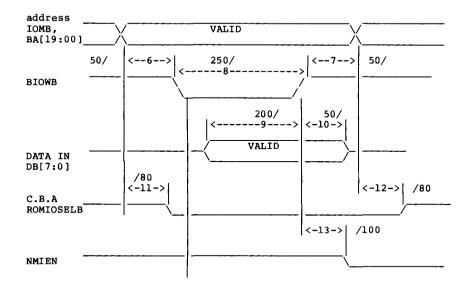

TIMING SPECIFICATION

MAXIMUM LOADING FOR EACH OUTPUT

MA[8]-MA[0] 100 pF ALL OTHER OUTPUTS 20 pF

CHARACTERISTICS

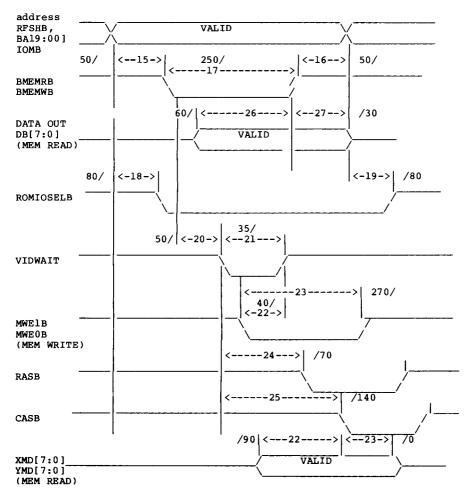
READ Operation


I/O TIMING

# DESCRIPTION	MIN	MAX	UNITS	NOTE
1 ADDRESS VALID TO BIORB ACTIVE SETUP	50	l	NS	<u>l</u>
2 ADDRESS VALID HOLD AFTER BIORB INACTIVE	50		NS	Ī
3 BIORB PULSE WIDTH LOW	250	l	NS	1
4 BIORB ACTIVE TO DATA OUT VALID	1	200	NS	1
5 BIORB INACTIVE TO DATA OUT TRISTATE	20	100	NS	

READ OPERATION

READ OPERATION


WRITE OPERATION AND I/O OUTPUT TIMING

# DESCRIPTION	MIN	MAX	UNITS N	OTE
6 ADDRESS VALID TO BIOWB ACTIVE SETUP	50		ns	
7 ADDRESS VALID HOLD AFTER BIOWB INACTIVE	50	l	NS	
8 BIOWB PULSE WIDTH LOW	250	l	NS	1
9 DATA IN VALID TO BIOWB INACTIVE SETUP	200		ns	
10 BIOWB INACTIVE TO DATA IN VALID HOLD	50		ns	1
11 ADDRESS VALID TO C,B,A,ROMIOSELB OUTPUT DELAY		80	NS	
12 ADDRESS NOT VALID TO ROMIOSELB INACTIVE OUT DE	LAY	80	ns	
13 BIOWB INACTIVE TO NMIEN LATCHED OUTPUT DELAY		100	NS	

MEMORY DECODE TIMING


MEMORY READ OR WRITE OPERATION

- TANDY COMPUTER PRODUCTS -

* DESCRIPTION	MIN MAX UNITS NOTE
15 ADDRESS VALID TO BMEMRB ACTIVE SETUP	50 NS
16 ADDRESS VALID HOLD AFTER BMEMRB INACTIVE	50 NS
17 BMEMRB PULSE WIDTH LOW	250 NS
18 ADDRESS VALID TO ROMIOSELB OUTPUT DELAY	80 NS
19 ADDRESS NOT VALID TO ROMIOSELB INACTIVE OUT	DELAY 80 NS
20 VIDWAIT DELAY FROM BMEMRB READ LOW	50 NS
21 VIDWAIT PULSE WIDTH	35 600 NS
22 XMD, YMD SETUP TO CASB LOW (MEM READ)	90 NS
23 XMD, YMD HOLD TO CASB LOW (MEM READ)	0 NS
24 VIDWAIT LOW DELAY TO RASB LOW	70 NS
25 VIDWAIT LOW DELAY TO CASB LOW	0 140 NS
26 I/O DATA BUS OUT SETUP TO BMEMRB HIGH	60 NS
27 I/O DATA BUS OUT HOLD TO BMEMRB HIGH	0 30 NS

CRTC TIMING

CRTC TIMING

	Characteristics	Symbol	Min	Nom	Max	Units
28	CCLK frequency	Fcyc	}		2	MH z
29	CCLK width	PWcl	100	i .		nS
30	CCLK rise and fall time	Tcr,Tcf			5	nS
31	CLK fall to					
	MA[7:0]RA0-4 delay time	Tmad,Trad	i		50	nS
32	CLK fall to HS, VS,					
	DE,CURSOR delay time	Thsd ,Tvsd			50	nS
		Tdtd,Tcdd				
33	MA[7:0],BANKSL setup to		40			nS
	RASB low		ì	1	ì .	1
34	MA[7:0],BANKSL setup to		10			nS
	CASB low					
35	MA[7:0],BANKSL hold from		30			nS
	RASB low					
36	MA[7:0],BANKSL hold from		40			nS
	CASB low					
37	RASB,CASB fall				20	nS
38	RASB,CASB rise				5	nS

OTHER TIMING SPECS

	Characteristics	Symbol	Min	Nom	Max	Units
39	Relative Skew of R,G,B,I				10	nS
40	Relative Skew of R,G,B,I With respect to Compcol				20	nS
41	Relative Skew of R,G,B,I With respect to CompSync OutHsync,OutVsync				35	nS
42	Relative Skew of R,G,B,I With respect to CompSync				35	nS

MEGACELL 6845R1 SPECIFICATION DATASHEET FOR 6845 MEGACELL

VE 68C45 MEGACELL DESIGN KIT CRT CONTROLLER MEGACELL

FEATURES

- Completely integrated with VTI's extensive IC design tools and libraries
- CMOS (2-micron) M68C45 Megacell configurable as:

 - -- 68C45R CMOS equivalent of Motorola 6845R CRTC -- 68C45Rl CMOS equivalent of Motorola 6845Rl Enhanced CRTC
 - -- 68C45S CMOS equivalent of Hitachi 6845S CRTC
 - -- 68C45SY CMOS CRTC similar to Synertek 6545 CRTC
- 4.5 MHz video memory interface
- 3 MHz system processor interface
- Compatible with the VTI bus architecture
- Programmable Display Enable and Cursor delays (standard for S and SY versions -- optional for R and R1 versions)
- Programmable Vertical Sync pulse width (standard for S version -- optional for R, Rl and SY versions)
- Row/Column display memory addressing (SY version)
- Double Width character control

OPTIONAL FEATURES

- 16K, 32K, or 64K display Memory Address range (14, 15, or 16 bits)
- 7. 8. or 9-bit Vertical Row counter

VTI MEGACELLS

Megacells are building block equivalents of standard LSI functions that can be combined with other megacells, standard cells or compiled cells to create custom User-Specific ICs (USICs). Megacells are fully compatible with VTI's other cell technologies and design tools.

The VTI bus (TM) architecture allows multiple megacells to be combined on a single IC, along with additional cells from VTI's extensive libraries -- decreasing the design time, design cost, and size of complex systems. A detailed Functional Model provided with each megacell further reduces design verification time.

SIGNAL DESCRIPTIONS

The following signals function the same on the M68C45 Megacells and on the standard VL6845 family of CRT Controller ICs.

Signal	1/0	Description
RS	IP	Register Select
E	IP	Enable
RNW	IP	Specify READ (high) or WRITE (low) operation
CSB	IP	Chip (6845 megacell) select, low true
CCLK	ΙP	Character Clock
LPSTB	IP	Light Pen Strobe
D0-D7	1/0	Data Bus
RAO-RA4	OP	Raster Address
HS	OP	Horizontal Sync
RESETB	IP	Reset, low true

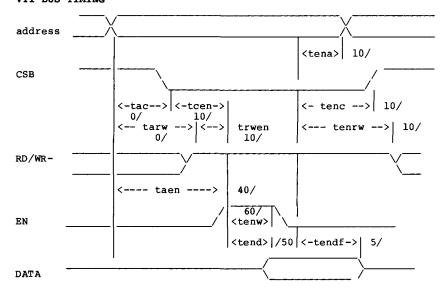
The following signals are unique to the VE68C45 Megacells, or are functionally different on the VE68C45 Megacells and the VL6845 ICs.

Signal	1/0	Description
DE	OP	Display Enable output - active (DE = "1") when the VE68C45 is generating active display information. The S version can be programmed with a 0, 1, or 2 character delay. The SY version can be programmed for a 0 or 1 character delay.
CURSOR	OP	Cursor output - this signal is high when the raster scan coincides with the programmed cursor position. The S version can be programmed with a 0, 1, or 2 character delay. The SY version can be programmed for a 0 or 1 character delay.
vs	OP	Vertical Sync output - active high pulse which determines the vertical placement of the video data. An optional feature permits programming the Vertical Sync pulse width.

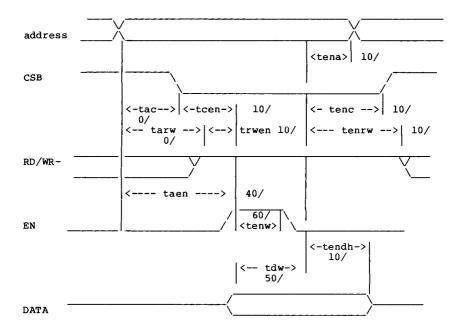
MA0-MA13, 14,15	OP	14, 15, or 16- bit Video Memory Address bus. These tri-state outputs provide the binary address to the external video RAM. If row/column addressing is selected (SY version only) this bus will provide row/column addressing to the external RAM instead of binary addressing. The AENB input signal can be used to place the MA bus in the high impedance state.
AENB	IP	Address Enable input - when asserted low (AENB = "0") the MA outputs are enabled. AENB = "1" forces the MA outputs into a high impedance state.
LD0-LD13, 14,15	1/0	14, 15, or 16-bit Advanced Memory Address bus - separate video memory address information on this bus precedes the information on the MA bus by one character clock. This bus is provided to interface with a separate strip of logic for split display capability.
LOAD	IP	When asserted (high) a new value is loaded into the RA counter. Tie to VSS when not used.
BREAK	IP	To be used for splitted screen format. Tie to VSS when not used.
READB	OP	This signal goes LOW during a legitimate read operation.
VDRA (reserved)	n/c	Reserved for future expansion. To be left unconnected.
DW	IP	Double Width input - this input puts the VE68C45 in a double-width display mode. Tie to VSS when not used.

6845R, IP 6845S, 6545SY One of these three inputs is tied high to select the version of the VE68C45 used in your application. The remaining two inputs must be grounded. NOTE: the VE68C45SY does not provide 6545 transparent addressing or the 6545 status register.

ELECTRICAL SPECIFICATIONS

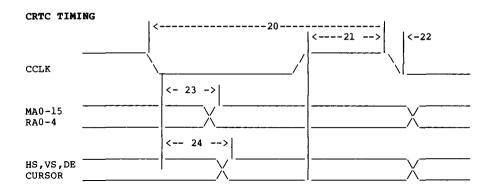

Absolute Maximum Ratings

Ambient temperature under bias 0 C to 70 C Storage temperature -65 C to +150 C Voltage on any signal with respect to Gnd -0.5V to +7V Power dissipation 750mW


DC characteristics (Ta = 0 - 70 degree C, Vss=0v, Vcc=+5 +/-10%)

Characteristics	Symbol	Min	Тур	Max	Units
Input High Voltage	 		 		
Inputs,I/O	Vih	3.0		Vcc	Volts
Input Low Voltage Inputs,I/O Output High Voltage	Vil	Vss		0.8	Volts
Output High Voltage Outputs,I/O Output Low Voltage	Voh	3.0		Vcc	Volts
Outputs, I/O	Vol	ĺ		0.4	Volts
Capacitance					
Input Capacitance	I	i	l		
CLK input	Cin			6	pF
remaining inputs	Cin	ļ		.7	pF
Output Loading	Gant.			9	~E
MA0-13,D0-7 RA0-4,HS,VS,DE,	Cout Cout		1	3	pF pF
Cursor	Cour	1) P1

AC CHARACTERISTICS (Vcc=+5v +/- 10%, Vss=0v, Ta=0 C to 70 C) VTI BUS TIMING



WRITE

VTI BUS TIMING

VII BOS TIMING	MIN(ns)	MAX(ns)
TAC address to CS delay	0	
TARW address to read/write delay	0	
TAEN address to enable set up	40	1
TCEN CS to enable delay	10	l
TRWEN read/write to enable set up	10	1 1
TENW enable pulse width	100	
TENA enable to address hold time	10	
TENC enable to cs hold time	10	
TENRW enable to read/write hold time	10	
read:		Į į
TEND enable to read data delay		50
TENDF enable to data bus float	5	30
write:		
TDEN write data to enable setup time	50	
TENDH enable to write data hold time	10	1

CRTC TIMING

	Characteristics	Symbol	Min	Nom	Мах	Units
20 21	CLK frequency CLK width	Fcyc PWcl	100		4.5	MHz nS
22 23	CLK rise and fall time	Ter,Tef			5	nS
24	MA0-15,RA0-4 delay time CLK fall to HS, VS,	Tmad,Trad			50	nS
	DE,CURSOR delay time	Thsd,Tvsd Tdtd,Tcdd			50	nS

TANDY COMPUTER PRODUCT	's
	•
DMA CHIP SPECIFICATION	

DMA CHIP SPECIFICATION CONTENTS

GENERAL DESCRIPTION
ADDRESS DECODE
PIN LIST
PIN FUNCTIONS
LOGIC BLOCK DIAGRAM
ELECTRICAL SPECIFICATIONS
TIMING

DMA CHIP SPECIFICATION

GENERAL DESCRIPTION

The DMA Chip is an Intel 8237A-5 (AMD 9517) DMA Controller plus associated support circuity to integrate the TANDY 1000 External Memory function into a single ASIC part. The support circuity is divided into the five functional sections. The ADDRESS DECODE-MEMORY and ADDRESS DECODE-IO are independent of the DMA function and interface directly into the bus. The TIMING and DMA RDY sections are DMA support functions. The BUFFERS support the in/out pins.

The functional configuration of the 8237 for the DMA Chip is a fixed subset of its total capability. It is configured via the BIOS ROM for: normal timing, fixed priority, late write, high DREQ sense, low DACK sense.

ADDRESS DECODE - MEMORY

Provides RAM Memory access decode and address generation. Bus addresses A19-A15 determine which segment(bank) of memory is being accessed based on one of four possible memory configurations. (see memory map Figure 1). This is combined with Bus strobes MEMWB or MEMRB and CLK to create one of the three RAS strobes (RASOB, RASIB or RAS2B), MUX, CAS, data directional controls DBDIR, DBENB and the multiplexed RAM addresses MAO-MA8. The signals CAS and MUX will occur for all access's except REFRESH. The address lines MAO-MA8 are Bus addresses A0-A8 and A9-A17 multiplexed together by the signal MUX. These will occur for all access's including REFRESH (since MUX does not occur during REFRESH, MAO-MA8 will be only A0-A8). The selection of MA8 will be made externally since Bank 0 and Bank 1 can be either 64K or 265K DRAM IC's.

	MCF0,MCF1 CODE	MEMORY ORGANIZATION	ADDRESS	ACCESS CONTROL SIGNAL
OPTION #1	00	BANK 0 64K x 8 BANK 1 64K x 8 BANK 2 EMPTY	0.0000-0.FFFF 1.0000-1.FFFF	RASO RASI
OPTION #2	01	BANK 0 256K x 8 BANK 1 EMPTY BANK 2 EMPTY	0.0000-3.FFFF	RAS0
OPTION #3	10	BANK 0 256K x 8 BANK 1 256K x 8 BANK 2 EMPTY	0.0000-3.FFFF 4.0000-7.FFFF	RAS0 RAS1
OPTION #4	11	BANK 0 64K x 8 BANK 1 64K x 8 BANK 2 256K x 8	0.0000-0.FFFF 1.0000-1.FFFF 2.0000-5.FFFF	RASO RASI RAS2

Figure 1 MEMORY CONFIGURATION MAP

EQUATIONS FOR RAS-B

64K DRAMS require address A0-A15, therefore A19-A16 determine access.

256K DRAMS require address A0-A17, therefore A19-A18 determine access.

- RASOB = /MCF1./MCF0./19./18./17./16./REFRESH.(MEMRB+MEMWB) OPTION #1 + /MCF1. MCF0./19./18. /REFRESH.(MEMRB+MEMWB) OPTION #2 + MCF1./MCF0./19./18. /REFRESH.(MEMRB+MEMWB) OPTION #3 + MCF1. MCF0./19./18./17./16./REFRESH.(MEMRB+MEMWB) OPTION #4 + REFRESH.MEMRB
- RAS1B = /MCF1./MCF0./19./18./17. 16./REFRESH.(MEMRB+MEMWB) OPTION #1 + MCF1./MCF0./19. 18. /REFRESH.(MEMRB+MEMWB) OPTION #3, NO OPTION #2
 - + MCF1. MCF0./19./18./17. 16./REFRESH.(MEMRB+MEMWB) OPTION #4
 - + REFRESH.MEMRB
- RAS3B = MCF1. MCF0./19./18. 17 /REFRESH.(MEMRB+MEMWB) OPTION #4, NO OPTION #1,#2,#3
 - + MCF1. MCF0./19. 18./17 /REFRESH.(MEMRB+MEMWB)
 - + REFRESH.MEMRB

EQUATIONS FOR MULTIPLEXED ADDRESSES MA-

		ROW ADDRESS	COLUMN ADDRESS	
		(FIRST)	(SECOND)	
MA0	:	A 0	A8	Since these addresses will
MAl	:	Al	A9	be used for either/both
MA2	:	A2	Al0	64K and 256K DRAMS, MA8
MA3	:	A3	All	will be Al6,Al7 instead
MA4	:	A4	A12	of two sets of MAs.
MA5	:	A5	A13	(i.e. 64K MA0=A0/A8,
MA6	:	A6	A14	256K MA0=A0/A9,etc.)
MA7	:	A7	A15	• •
MA8	:	A16	A17	

ADDRESS DECODE - I/O

Provides I/O decode for generating the chip selects for the DMA Controller and the DMA Segment Address Register plus the data directional control signals DBDIR and DBENB. Bus addresses A0-A15 are decoded and combined with Bus strobes IORB or IOWB to create the chip selects.

CHIP SELECT FUNCTION	ADDRESS	SIGNAL EQUATION (A19-A16 = don't care) (A15,,A8 = 0, ALWAY	
DMA	x.0000-x.000F	DMACSB = $/A7./A6./A5./A4./AEN.(IORB + IOW)$	VB)
DMA SEGMENT REGISTER	x.0080-x.0083	WPRCSB = A7./A6./A5./A4./A4./AEN.IOWB	

Figure 2 I/O CONFIGURATION MAP

DMA READY

A system requirement is to have one WAIT cycle automatically inserted into each I/O transfer. When an IORB occurs, WAIT cycles will continually be inserted until IORB returns inactive or until a MEMWB or MEMRB occurs.

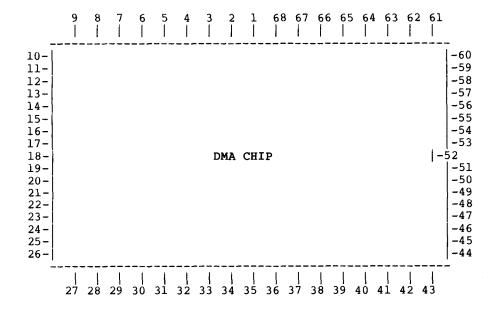
This one WAIT cycle is inserted automatically when the CPU is Bus Master. Therefore when the DMA is a Bus Master, it is necessary to insert one WAIT cycle into each DMA I.O transfer (that is every transfer) and honor any additional WAIT requests from the system.

TIMING GENERATOR

The input clock is OSC (= 14.31818 MHZ).

- 1.) It is divided by three to recreate the 4.77 MHz system processor clock which is used as the clock for the 8237.
- 2.) It is used to delay the memory access strobe MEM-B twice to create the timing for RAS-, MUX, and CAS.

BUFFERS


Provide isolation and drive capability since this circuit will interface directly onto the system bus. These buffers include the bi-directional buffers for address and control strobes (CPU Bus Master - Receive control, address, DMA Bus Master - transmit control, address) but excludes the bi-directional data buffer. Since it must be shared by the memory, this part will be provided externally. Decoding from the ADDRESS DECODE I/O and MEMORY circuitry are combined to provide directional control signals DBDIR, DBENB for this data bus buffer.

FUNCTION	SIGNAL	EQUATION	
DATA BUS DIRECTIONAL CONTROL	DBDIR	= DMACSB.IORB + /MCF1./MCF0./19./18./17. /REFRESH. MI + /MCF1. MCF0./19./18. /REFRESH. MI + MCF1. /MCF0./19. /REFRESH. MI + MCF1. MCF0./19.(/18 + 18./17)./REFRESH. MI	EMRB EMRB
DATA BUS BUFFER ENABLE	DBENB	= DMACSB + WPRCSB + /MCF1./MCF0./19./18./17. /REFRESH. MI + /MCF1. MCF0./19./18. /REFRESH. MI + MCF1. /MCF0./19. /REFRESH. MI + MCF1. MCF0./19.(/18 + 18./17)./REFRESH. MI	EM-B EM-B

ADDRESS BUS,
CONTROL BUS
DIRECTIONAL DMAAENB = 8257 Signal AEN inverted
CONTROL

Figure 3 BUFFER CONTROL SIGNALS

PIN LIST

DESCRIPTION OF EACH PIN FUNCTION

FUNCTION	PIN NUMBER	FUNCTION	PIN NUMBER
vss	1	VDD	35
RFSHB	2	CASB	36
REFRESHB	3	RAS0B	37
MCF1	4	RAS1B	38
MCF0	5	RAS2B	39
WRB	6	MA0	40
FDCDMACKB	7	MAl	41
DACK1B	8	MA2	42
DACK3B	9	MA3	43
DMATC	10	MA4	44
FDCDMARQB	11	MA5	45
DRQ1B	12	MA6	46
DRQ3B	13	MA7	47
DBDIR	14	MA8	48
DBEN	15	A19	49
MEGAPIN	16	A18	50
OSC	17	A17	51
VSS2	18	Al6	52
BREQB	19	A15	53
RESET	20	Al4	54
AENA	21	Al3	55
BRDY	22	A12	56
MEMWB	23	All	57
MEMRB	24	AlO	58
IOWB	25	A9	59
IORB	26	A8	60
D7	27	A7	61
D6	28	A6	62
D5	29	A5	63
D4	30	A4	64
D3	31	A3	65
D2	32	A2	66
Dl	33	Al	67
D0	34	A0	68

PIN DEFINITIONS

NOTE: All negative true signals use the suffix "B".

INPUTS: (11 pins)

MCF0	Memory configuration OPTION Select.
MCFl	(See Figure 1 for details.)
RFSH	8237 CHANNEL 0 REQUEST (DREQ2)
	Input from timer. Set up as 16 microsec
	interval timer for REFRESH.
DRQl	8237 CHANNEL 1 REQUEST (DREQ1)
FDCDMARQ	8237 CHANNEL 2 REQUEST (DREQ2) dedicated
	to FDC.
DRQ3	8237 CHANNEL 3 REQUEST (DREQ3)
READY	System READY signal for DMA.
RESET	System hardware master RESET.
OSC	Memory timing clock. Currently CLK14M.
AEN	CPU Bus Grant (8237 HLDA)
TEST	Input for TEST mode used by IC mfg.

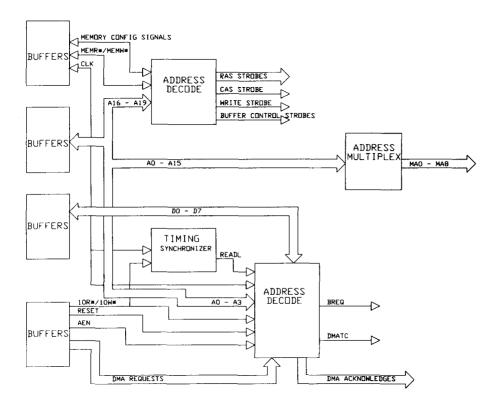
BI-DIRECTIONAL: (32 pins)

BUSA19-BUSA16	System Segment Address (CPU BUS MASTER-INPUT, DMA BUS MASTER-OUTPUT)
BUSA15-BUSA0	•
D00-D07	System Data Bus (WRITE-OUTPUT,
MRB	READ- INPUT) System Memory Read strobe (CPU BUS
	MASTER- INPUT, DMA BUS MASTER- OUTPUT)
MWB	System Memory Write strobe (CPU BUS MASTER- INPUT, DMA BUS MASTER- OUTPUT)
IRB	System Memory Read strobe (CPU BUS
IWB	MASTER- INPUT, DMA BUS MASTER- OUTPUT) System Memory Write strobe (CPU BUS
	MASTER- INPUT. DMA BUS MASTER- OUTPUT)

OUTPUTS: (20 pins)

80AM-00AM	External Memory multilplexed address
RAS0B-RAS2B	External Memory ROW strobes.
CASB	External Memory COLUMN strobe.
WRB	External Memory WRITE strobe.
DBDIR	Data Buffer directional control (Read=1).
DBENB	Data Buffer enable.
REFRESHB	8237 CHANNEL 0 ACKNOWLEDGE (DREQ0)
	Acknowledge from DMA channel 0 setup for
	refresh.
DACK1B	8237 CHANNEL 1 ACKNOWLEDGE (DREQ1)
FDCDMACKB	8237 CHANNEL 2 ACKNOWLEDGE (DREQ2)
DACK 3B	8237 CHANNEL 3 ACKNOWLEDGE (DREQ3)
DMATC	8237 EOP (output only)
BREQB	CPU Bus Request (8237 HRQ)

POWER: (4 pins)


VDD +5 VDC VSS GND

TOTAL PIN COUNT = 68

PIN SENSE	DMA PINOUT	8237	PINOUT
BIDIR BIDIR BIDIR BIDIR	A0 - A1 (BIDIR ENA A2 - = DMAAEN) A3 -	A0 Al A2 A3	(BIDIR ENA - =8237 CNTL)
TSFBAK TSFBAK TSFBAK TSFBAK	A4 - A5 (TS ENA A6 - = DMAAEN) A7 -	A4 A5 A6 A7	(TS ENA = LOGIC 1)
TSFBAK	A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19		

____ TANDY COMPUTER PRODUCTS -

PIN SENSE	DMA PINOUT	8237 PINOUT
BIDIR	D0	D0
BIDIR	D1	D1
BIDIR	D2	D2
BIDIR	D3	D3
BIDIR	D4	D4
BIDIR	D5	D5
BIDIR	D6	D6
BIDIR	D7	D7
OUTPUT	MAD 0	
OUTPUT	MAD1	
OUTPUT	MAD 2	
OUTPUT	MAD 3	
OUTPUT	MAD4	
OUTPUT	MAD5	
OUTPUT	MAD 6	
OUTPUT	MAD7	
TRISTATE	MAD8	
INPUT	RESET	RESET
INPUT	READY	RDY (MUXED)
OUTPUT	DMATC	EOP* (INVERTED)
OUTPUT	BREQ*	HRQ (INVERTED)
INPUT	OSC	CLK (MUXED)
INPUT	DRQ3	DREQ3
INPUT	FDCDMARQ*	DREQ2
INPUT	DRQ1*	DREQ1
INPUT	RFSH*	DREQ0 (MUXED)
OUTPUT	REFRESH*	DACK 0
OUTPUT	DACK1*	DACK1
OUTPUT	FDCDMACK*	DACK 2
OUTPUT	DACK3*	DACK 3
OUTPUT	RAS0	
OUTPUT	RAS1	
OUTPUT	RAS 2	AG (MINTER)
OUTPUT	CAS WR*	AS (MUXED)
OUTPUT		AEN (MUXED)
INPUT	MCF1	CS (MUXED)
INPUT	MCF0	
OUTPUT	DBDIR	
OUTPUT	DBEN	HI DA
INPUT BIDIR	AEN (SYSTEM) MEMW* -	HLDA MW* ~
BIDIR	MEMW* - (BIDIR ENA	MW* MR* (BIDIR ENA
BIDIR		IOW* - =8237 CNTL)
BIDIR	IOW* = DMAAEN) IOR* -	IOW* - =023/ CNTL)
POWER	VDD	VDD
POWER	VDD	VDD
GROUND	VSS	VSS
GROUND	VSS	100
============		
	68 PINS	40 PINS

LOGIC BLOCK DIAGRAM

ELECTRICAL SPECIFICATIONS - DMA

ELECTRICAL PARAMETERS

ABSOLUTE MAX RATINGS (NON-OPERATING, VSS=0.0V)

	MIN	MAX	UNITS
STORAGE TEMPERATURE	-65	+150	DEGREES C.
VOLTAGE ON ANY PIN	-0.5	7.0	VOLTS

OPERATING ELECTRICAL SPECIFICATIONS:

OPERATING AMBIENT	MIN	TYP	MAX	UNITS
AIR TEMP. RANGE	0	25	70	DEGREES C
POWER SUPPLIES VDD VSS	4.5 0	5.0	5.5 0	VOLTS VOLTS
ICC			100	MILLIAMPS

NOTE: INCLUDE ALL RELEVENT CONDITIONS UNDER WHICH ICC IS TO BE MEASURED; IE, ALL INPUTS AT VSS OR VCC, CLOCK FREQUENCY, ETC.

TOTAL POWER DISSIPATION 700 MILLIWATTS (Include output loading)

LEAKAGE CURRENT	MIN	TYP	MAX
		20 -20	microamps microamps
INPUT VOLTAGES			
LOGIC "0" (Vil)		8.0	volts
LOGIC "1" (Vih)	2.0		volts

----- TANDY COMPUTER PRODUCTS -

OUTPUT	VOLTAGES	CURRENT	LOADING MIN	TYP	MAX	IINTTS
COIPUI	VODIAGES	CURRENT	TOWDINGIMIN	TIP	MAA	UNITS

LOGIC "0" (Vol)

0.4 volts

@ 4.0 MA LOAD

LOGIC "1" (Voh) @ 0.4 MA LOAD 2.4

volts

INPUT CAPACITANCE MIN TYP MAX

All inputs 0.0 < Vin < 5.0 10 picofarads

OUTPUT CAPACITANCE

All outputs 50 picofarads

Except Data (bi-directional)

BI-DIRECTIONAL CAPACITANCE

SEE NOTES 3-6 IN THE FOLLOWING SECTION.

TIMING SPECIFICATION

MAXIMUM LOADING FOR EACH OUTPUT

Capacitive Load:50pf Current Load: Ioh = 4.0 MA Iol = 0.4 MA

INPUT/OUTPUT TIMING

(NOTE: ALL AC TESTING AND TIMING MEASUREMENTS WILL BE AT THE FOLLOWING CONDITIONS: VOH (OUTPUT 1 LEVEL) = 2.0V, AND VOL (OUTPUT 0 LEVEL) = .8V)

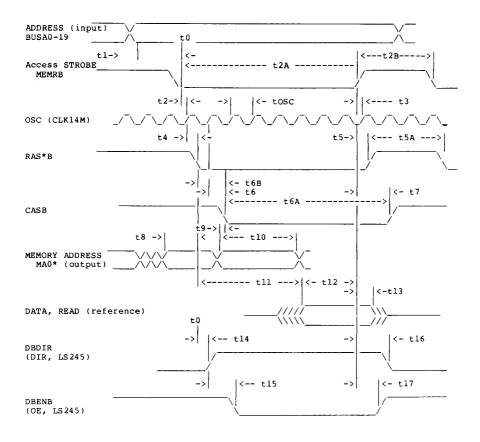


Figure 1. MEMORY TIMING PARAMETERS, READ

MEMORY TIMING PARAMETERS , READ

	min	typ	max		
t0 Reference time zero, STROBE lo tOSC Period of 14.31818 MHz		69.8			
tl ADDRESS Setup to STROBE lo t2 STROBE lo Setup to OSC hi t2A STROBE lo Length t2B STROBE hi Length t3 STROBE hi Setup to OSC hi	50 15 don'	250 250 t care	<u>.</u>		
t4 RAS*B lo Delay from OSC hi t5 RAS*B hi Delay from STROBE hi	0		40 40		
t5A RAS*B hi Length t6 CAS*B lo Delay from OSC hi t6A CAS*B lo Length	100 0 75		40	 	
t6B CAS*B lo Delay from RAS*B lo t7 CAS*B hi Delay from STROBE hi		69.8 69.8			
t8 MA*-Row Address Valid Setup to RAS*B lo t9 MA*-Column Address	20			NOTE	2
Valid Setup to CAS*B lo tl0 MA*-Column Address Hold	20 35			NOTE	2
tll DATA Valid Delay from RAS*B True (reference)		150		NOTE	6
tl2 DATA Valid Setup to STROBE hi tl3 DATA Hold from STROBE False hi	70			NOTE	3
tl4 DBDIR lo Delay from STROBE lo tl5 DBENB lo Delay after DBDIR hi tl6 DBENB Hold from STROBE hi	0	70	40	NOTE	4
tl7 DBDIR Hold from DBENB hi	j 0			NOTE	5

- NOTE 1 Setup time t2 will be defined by the ASIC design.

 It should be of sufficient length to allow Clear on RAS flip-flop to go false and still meet setup time before next clock rising edge.
- NOTE 2 Address outputs are loaded with 3 row x 8 DRAMS = 24 x 8 pf = 192 pf. each.
- NOTE 3 Additional delay through LS245 needs to be added to match Bus Specs.

 Bus requires +75 ns setup. LS245 into 45pf requires 20 ns. Therefore 75+20=95 ns.
- NOTE 4 Applying the DIRection signal to the LS245 and allowing the part to settle before applying OUTput ENable reduces Bus and power noise. Also OUTput ENable should be removed first.
- NOTE 5 OUTput ENable should be removed first before changing DIRection.
- NOTE 6 Depends upon DRAM used.

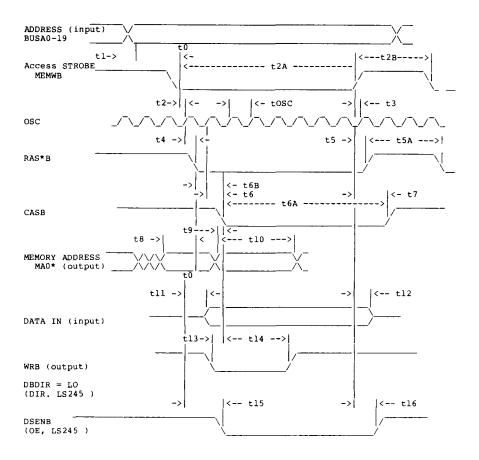


Figure 2. MEMORY TIMING PARAMETERS, WRITE

MEMORY TIMING PARAMETERS, WRITE

	min	typ	max	1
tl thru tl0, see MEMORY TIMING PARAMETERS, READ tll DATA Valid Delay after STROBE lo tl2 DATA Valid Hold after STROBE hi tl3 WRB lo Setup to CASB lo tl4 WRB lo Hold after CASB lo tl5 DBENB lo Delay after STROBE lo tl6 DBENB Hold from STROBE hi	20 30 70	70	50	 NOTE 1 [1] (2) (3) (3) [1]

NOTE 1 For CPU generated MEMWB, data will appear about the same time as the STROBE, but for DMA generated MEMWB, data will appear before MEMWB.

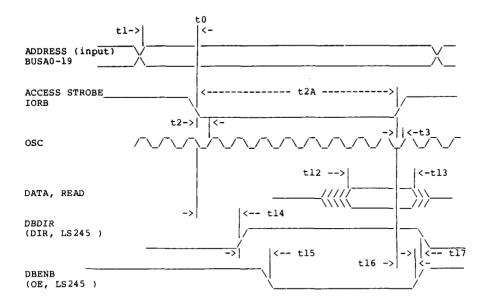


Figure 3. I/O CHIP SELECT PARAMETERS, READ

I/O CHIP SELECT PARAMETERS, READ

	min	typ	max
tl ADDRESS Valid Setup to STROBE lo	50		
t2 STROBE lo Setup to OSC hi t2A STROBE lo Length	15 420		
t3 STROBE hi Setup to OSC hi	20		
tl2 DATA Valid Setup to STROBE hi tl3 DATA Hold from STROBE hi	90		
tl4 DBDIR hi Delay from STROBE lo	"		70
tl5 DBENB lo Delay after DBDIR hi tl6 DBENB Hold from STROBE hi	0	70	
tl7 DBDIR Hold after DBENB hi	ŏ		

NOTE 1 ENable should be removed first before changing DIRection.

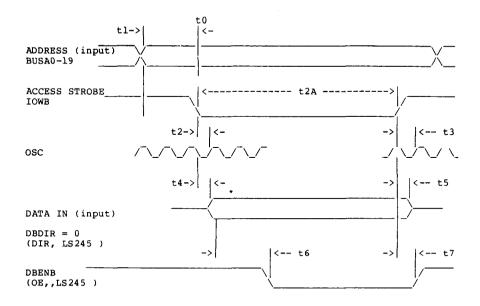
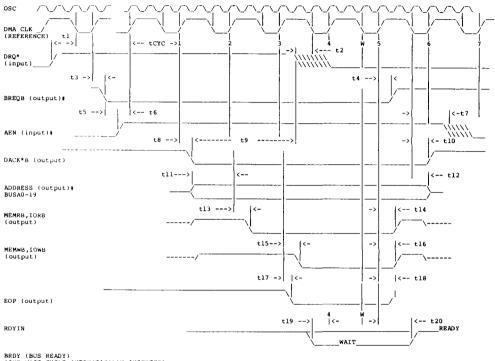


Figure 4. I/O CHIP SELECT PARAMETERS, WRITE

I/O CHIP SELECT PARAMETERS, WRITE

	min	typ	max
tl ADDRESS Valid Setup to STROBE lo	50		
t2 STROBE lo Setup to OSC hi	15		
t2A STROBE lo Length	420		
t3 STROBE hi Setup to OSC hi	20		
t4 DATA Valid Setup to STROBE lo		0	
t5 DATA Hold from STROBE hi	0		
t6 DBENB Delay after STROBE lo			70
t7 DBENB Hold from STROBE hi	0		

5


BUS

MASTER

TIMING

READ

WRITE

BRDY (BUS READY) (ONE WAIT CYCLE AUTOMATICALLY INSERTED) (BRDY = 0 REQUEST FOR ADDITIONAL WAIT CYCLES)

_____ TANDY COMPUTER PRODUCTS ----

DMA BUS MASTER TIMING, READ / WRITE

	min typ max
tl DRQ* True Setup to CLK lo t2 DRQ* False Setup to CLK lo	30 30
t3 BREQB True Delay from CLK hi t4 BREQB False Delay from CLK hi	120 8237A-5 tDQ1 120 8237A-5 tDQ1
t5 AEN True Delay after BREQB True t6 AEN True Setup to CLK Hi t7 AEN False delay from CLK hi	N x tCYC +30 N = 40 40
t8 DACK*B True Delay from CLK lo t9 DACK*B True Hold from AEN True t10 DACK*B False delay from CLK lo	170 8237A-5 tAK 0 8237A-5 NOTE 6 170 8237A-5 tAK
tll ADDRESS Valid Setup to CLK Hi tl2 ADDRESS False delay from CLK hi	50 System Spec
tl2 MEMRB or IORB True Delay from CLK hi tl3 MEMRB or IORB False Delay after CLK hi	40
tl4 MEMWB or IOWB True Delay from CLK hi tl5 MEMWB or IOWB False Delay after CLK hi	40
tl6 EOP True Delay after CLK hi tl7 EOP False Delay after CLK hi	40
tl8 BRDY False Setup to CLK hi tl9 BRDY False Hold after CLK hi	30

PRINTER INTERFACE SPECIFICATION

PRINTER INTERFACE SPECIFICATION CONTENTS

GENERAL	DESCRIPTION	
SPECIFIC	CATIONS	

PRINTER INTERFACE SPECIFICATION TANDY PART # 8075068 APRIL 30, 1986

1. GENERAL DESCRIPTION

1.1 The Tandy part# 8075068 - Printer Interface I.C provides the interface between the system I/O bus and the printer. Figure 1 shows Block diagram of Printer Interface chip. Figure 2 shows pin configurations of Printer interface

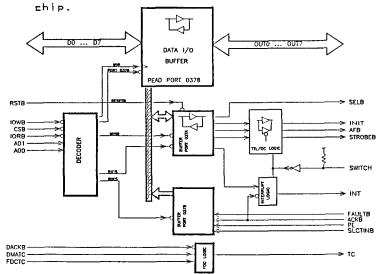


Figure 1.

1[NT	VDD40
2 SWITCH	D739
3401	D538
4400	D3 37
5 OUTO	D136
6DUT1	0035
7OUT2	D234
BOUT3	D433
9OUT7	0632
100076	CSB31
11OUT5	10WB30
12OUT4	10RB29
13STROBEB	RSTB28
14AFB	NC27
15INIT	SLCTINB26
16SELB	TC 25
17-FAULT	DMATC24
18PE	FDCDACKB23
19 BUSY	FDCTC22
20VSS	ACKB21

Figure 2.

1.2 DESCRIPTION OF EACH PINS:

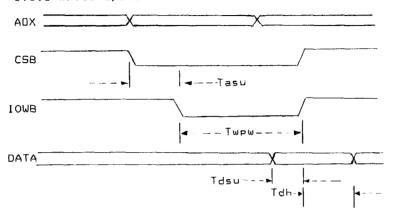
Pin#	Pin Name	Туре	Description
1	INT	output	Interrupt signal
2	SWITCH	input	Switch for totem pole output
			or open collector output on
3	A01	input	INITB, AF, STROBÉB. CPU address line
4	A00	input	CPU address line
5	OUTO		Data I/O line
6	OUT1		Data I/O line
7	OUT2		Data I/O line
В	OUT3	input/output	Data I/O line
9	OUT7		Data I/O line
10	OUT6		Data I/O line
11	OUT5		Data I/O line
12 13	OUT4		Data 1/0 line
14	STROBEB AFB	output	Printer Strobe signal Printer Autofeed signal
15	INITB	output output	Printer Initialize signal
16	SEL	putput	Printer Select signal
17	FAULTB	input	Printer Fault signal
18	PE	input	Printer Paper empty signal
19	BUSY	input	Printer Busy signal
20	VSS	ground	Ground
21	ACKB	input	Printer Acknowledge signal
22	FDCTC	input	FDC Terminal Count
23	FDCDACKB	input	FDC-DMA Acknowledge signal
24	DMATC	input	DMA Terminal Count
25	TC	autput	FDC Terminal Count signal
26 27	SLCTINB NC	input 	Printer Select input Not used
28	RSTB	input	System Reset
29	IORB	input	CPU I/O Read strobe
30	IOWB	input	CPU I/O Write strobe
31	CSB	input	Chip select signal
32	D6	Input/output	CPU Data I/O
33	D4		CPU Data I/O
34	D2		CPU Data I/O
35	DO		CPU Data I/O
36	D1		CPU Data I/O
37	D3		CPU Data I/O
38	D5		CPU Data I/O
39 40	D7 VDD		CPU Data I/O
40	Ληη	power	+5 Valt Pawer Supply

2. ENVIRONMENTAL SPECIFICATIONS

- 2.1 Storage Temperature -65 C to 150 C
- 2.2 Operating Temperature 0 C to 70 C

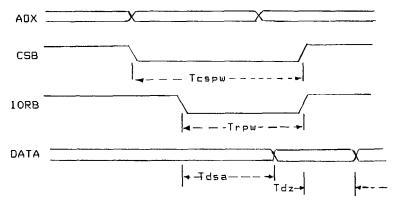
3. ELECTRICAL SPECIFICATIONS

3.1 Absolute Maximum Rating


Parameter	Min.	Typ.	$Ma \times .$	Units	Cand.
		-			
Voltage, any pin Power Dissipation	-1.0		7.0 0.5	Volts Watts	W.R.T ground

3.2 D.C. Electrical Characteristics

5y	mb.	Parameter	Min.	Тур.	Max.	Units	Cand.
VD	D	Supply Voltage	4.5	5.0	5.5	Volts	
		Quiescent current Operating Current			50 40	⊔A mA	
Vi Vi		Input Low Voltage Input High Voltage	2.0		0.8		TTL inputs TTL inputs
Ιi	n	Input Leakage	-10		10	υА	
Ci	n	Input Capacitance			7	ρF	
Vo Vo	•	Output Low Voltage Output High Voltage	2.4		0.4	Volts Valts	04 mA 0-2 mA
I o	z	High Impedance Leak	-10		10	uΑ	


3.3 A.C Electrical Characteristics

3.3.1 Write Cycle

Symb.	Parameter	Min. Typ. Max.	Units Cond.
			~
Tasu	Address Setup	15	nS
Twpw	Write Pulse Width	69	пS
Tdsu	Data Setup	29	nS
Tdh	Data Hold	6	nS

Symb.	Parameter 	Min.	Тур.	Max.	Units	Cond.
Trpw	Chip Select Width Read Pulse Width Data Access Bus Hold/release	69 69 6		69 25	nS nS nS	

KEYBOARD INTERFACE SPECIFICATION

KEYBOARD INTERFACE SPECIFICATION CONTENTS

GENERAL	DESCRIPTION	.1
SPECIFIC	ATIONS	. 3

KEYBOARD INTERFACE SPECIFICATION TANDY PART # 8075069 MAY 05, 1986

1. GENERAL DESCRIPTION

- 1.1 The Tandy part# 8075069 Keyboard Interface I.C provides two functions:
 - a. Interface between the system I/O bus and keyboard.
 - b. FDC support logic that generates DRIVE SELECT SIGNAL, MOTOR ON SIGNAL, FDC TERMINAL COUNT, FDC RESET and

Figure 1. shows block diagram of Keyboard Interface chip Figure 2. shows pin configuration of Keyboard Interface chip.

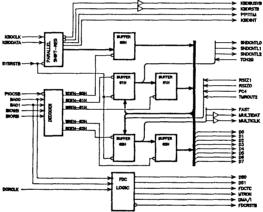


Figure 1.

1	KBDCLK V	VDD40
2	KBDDATA	MULTICLK39
3	KBDBUSYB	MULTIDAT38
4	KBDINT	FAS137
5	RSIZO	TCH2G36
6	RSIZ1	PP1T1M35
7	00	DSD34
8	D1	DS133
9	02	FDCRST32
10	03	DMA/131
11	D4	MTRON30
12	05	FDCTC29
13	D6	SNDCNTL228
14	D7	SNDCNTLD27
15	P10C5B	SNDCNTL126
16	BA00	TMROUT225
17	BA01	PC424
18	BIORB	SYSRSTB23
19	BIOWB	KBDRSTB22
20	VSS	DORCLK21

Figure 2.

1.2 DESCRIPTION OF EACH PINS:

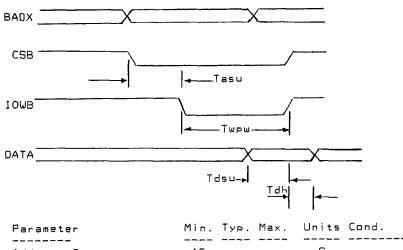
Pin#	Pin Name	Type	Description
1 2 3 4 5 6 7 8 9 10 11 12 13	KBDCLK KBDDATA KBDBUSYB KBDINT RSIZO RSIZ1 DO D1 D2 D3 D4 D5 D6 D7	input input output output input input input/output	Keyboard clock Keyboard data Keyboard busy signal Keyboard interrupt signal Monochrome/color monitor mode Reserved Data I/O line
15 16 17 18 19 21 22 22 22 22 27 28 29 31	PIOCSB BADD BAD1 BIORB BIOWB VSS DORCLK KBDRSTB SYSRTB PC4 TMROUT2 SNDCNTL1 SNDCNTL1 SNDCNTL2 FDCTC MTRON DMA/I	input input input input input input ground input output input input input output output output output output output	Chip select strobe CPU address line CPU address line CPU I/O read strobe CPU I/O write strobe Ground Decode latch clock Keyboard reset signal System reset signal Video memory size mode Timer counter from 8253 out2 Sound control 1 Sound control 2 FDC terminal count Motor ON signal to disk drive DMA Request & FDC Interrupt enable
32 33 34 35 36 37 38	FDCRSTB DS1 DS0 PPITIM TCH2G FAST	output output output output input	FDC reset signal Drive select 1 signal Drive select 0 signal Timer Video signal Timer channel 2 gate 4.77Mhz or 7.16Mhz mode select Multi-data
40	MULTICLK VDD	putput power	Multi-clock +5 Valt Power Supply

2. ENVIRONMENTAL SPECIFICATIONS

2.1 Storage Temperature $\,$ -65 C to 150 C 2.2 Operating Temperature $\,$ 0 C to 70 C $\,$

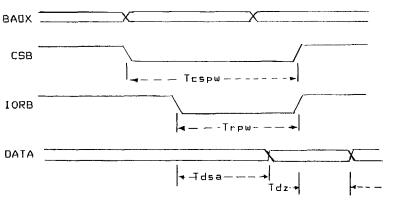
3. ELECTRICAL SPECIFICATIONS

3.1 Absolute Maximum Rating

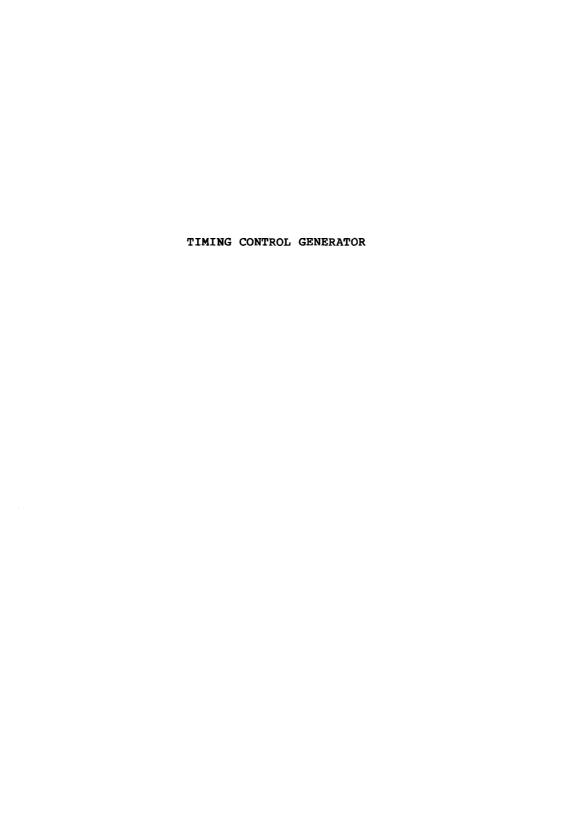

Parameter	Min.	Typ.	$ exttt{Ma} imes$.	Units	Cond.
Voltage, any pin Power Dissipation	-1.0		7.0 0.5	Volts Watts	W.R.T ground

3.2 D.C. Electrical Characteristics

Symb.	Parameter	Min.	Typ.	Max.	Units Cond.
ODV	Supply Voltage	4.5	5.0	5.5	Volts
) Quiescent current) Operating Current			50 40	⊔A mA
Vil Vih	Input Low Voltage Input High Voltage	2.0		0.8	Valts TTL inputs Valts TTL inputs
Iin	Input Leakage	-10		10	uА
Cin	Input Capacitance			7	ρF
Vol Voh	Output Low Voltage Output High Voltage	2.4		0.4	Volts @4 mA Volts @-2 mA
Ioz	High Impedance Leak	-10		10	uΑ


3.3 A.C Electrical Characteristics

3.3.1 Write Cycle



Symb.	Parameter	Min. Typ.	Ma×.	Units	Cand.
Tasu	Address Setup	15		nS	
Tw⊳w	Write Pulse Width	69		n\$	
Tdsu	Data Setup	29		nS	
Tdb	Data Hold	6		nS	

5ymb.	Parameter	Min. Typ.	Max.	Units	Cand.
Tcspw Trpw Tda Tdz	Chip Select Width Read Pulse Width Data Access Bus Hold/release	69 69 6	69 25	n S n S n S	

TIMING CONTROL GENERATOR CONTENTS

GENERAL DESCRIPTION	1
BLOCK DIAGRAM	
SPECIFICATIONS	
TIMING DIAGRAMS	

TIMING CONTROL GENERATOR TANDY PART # 8075306 MAY 07, 1986 REV 050886

1.0 GENERAL DESCRIPTION

- 1.1 The Tandy part # 8075306 Timing Control Generator:
 - creates eight clock outputs from two independent oscillator inputs.
 - synchronizes the ready signals.
 - synthesizes the system control strobes from the CPU status signals.
 - interfaces the system signals (HOLD, HLDA) with the CPU signals (RQ/GT).
 - creates two FDC chip selects and the DMA request delay.

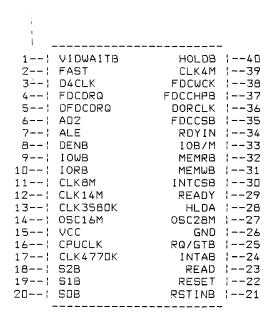
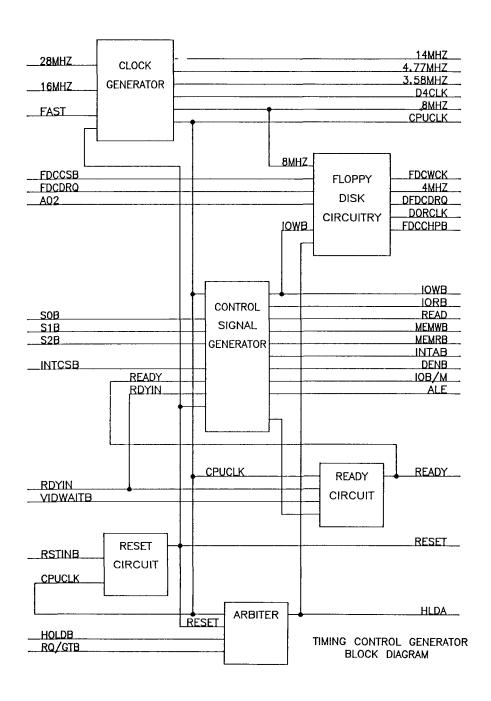



Figure 1. Pin Assignment

1.2 DESCRIPTION OF PINS:

Pin #	Pin Name	Туре	Description
1	VIDWAITB		Wait signal from video system (D = Wait)
2	FAST	INPUT	Clock speed select
3	D4CLK	OUTPUT	CLK477M/4, Squarewave
4	FDCDRQ		FDC DMA Request
5	DEDCDRQ	OUTPUT	Beginning of FDCDRQ delayed 1.0 microsec
6	A02	INPUT	System Address
7	ALE	OUTPUT	Address Latch Enable
ė	DENB	OUTPUT	Date Enable
9	IOMB	OUTPUT	I/O Write
10	IORB	OUTPUT	I/O Read
11	CLKBM		OSC16M/2, Squarewave
12	CLK14M	OUTPUT	OSC28M/2, Squarewave
13	CLK358BK		OSC2BM/8, Squarewave
14			Input Frequency = 16.00000 MHz
	05C16M	INPUT	Input rrequency = 16.00000 MHz
15	VDD	POWER	EACT-1 COUCLE-7 1/MU /OCCZOM// ED ED L-)
16	CPUCLK	OUTPUT	FAST=1, CPUCLK=7.16MHz (0SC28M/4, 50-50 cycle) FAST=0, CPUCLK=4.77MHz (0SC28M/6, 33-67 cycle)
17	CLK4770K	OUTPUT	CLK14M/3, 33% duty cycle
18	\$2B	INPUT	8088 Status Signal
19	S1B	INPUT	8088 Status Signal
20	SOB	INPUT	8088 Status Signal
21	RSTINB	INPUT	Asynchronous system input
22	RESET		8888 CPU Reset input
23	READ	TU9TUO	Directional Control for CPU Data buffer
24	INTAB	OUTPUT	Interrupt Acknowledge
25	RQ/GTB	INPUT/OUTPUT	
26	VSS	GROUND	
27	OSC28M	INPUT	Input frequency = 28.63636 MHz
28	HLDA	OUTPUT	Bus Acknowledge
29	READY	OUTPUT	8088 CPU READY input
30	INTCSB	INPUT	8257 Interrupt Controller Chip Select
31	MEMWB	OUTPUT	Memory Write
32	MEMRB	OUTPUT	Memory Read
33	IOB/M	OUTPUT	1 = Memory access, D = I/O access
34	RDYIN	INPUT	Asynchronous system input (0 = Wait condition)
35	FDCCSB	INPUT	Previously decoded FDC Function I/O chip select
36	DORCLK	OUTPUT	Configuration register Chip Select
37	FDCCHPB	OUTPUT	FDC Chip Select
38	FDCWCK	OUTPUT	Pulse, Period = 2 microsec, 250(nom) pulse
39	CLK4M	OUTPUT	OSC16M/4, Squarewave
40	HOLDB	INPUT	Bus Request
40	HOLDE	IN UI	DOS VERNES!

2.0 ENVIRONMENTAL SPECIFICATIONS

- 2.1 Storage Temperature: -65 min, +150 max degmees C 2.2 Operating temperature: 0 min, +25 typ, + 70 max degrees C
- 3.0 ELECTRICAL SPECIFICATIONS
- 3.1 Absolute Maximum Rating: Voltage on any pin w.r.t. Ground: -0.5 min, 7.0 max volts
- 3.2 Operating Electrical Specifications:
- min typ units max 3.2.1 Operating Ambient:
- Air Temp. Range 25 70 degrees C

4.5

2.0

3.5

2.4

5.0

0

5.5

100

700

-10

+10

. 8

.5

. 4

10

volts

volts

volts

volts

volts

valts

volts

volts

volts

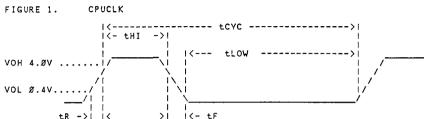
рf

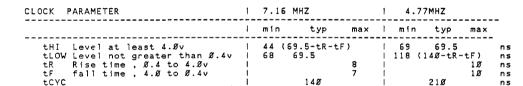
milliamps

milliwatts

microamps

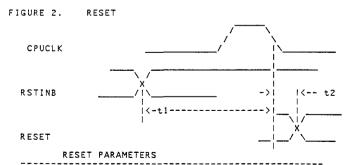
microamps


- 3.2.2 Power Supplies:
- ממע
 - VSS
 - LCC
 - Total Power
- 3.2.3 Leakage Current, All Inputs:
- Vin = 0.0 v
- Vin = 5.0 v
- 3.2.4 Input voltages:
 - Logic "D"
 - Except RSTIN
 - Logic "1" Except RSTIN
- 3.2.5 Output Voltages:

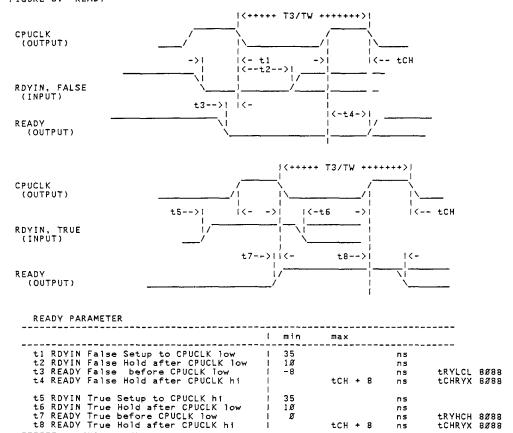

 - logic "D" a 4.0 mA load

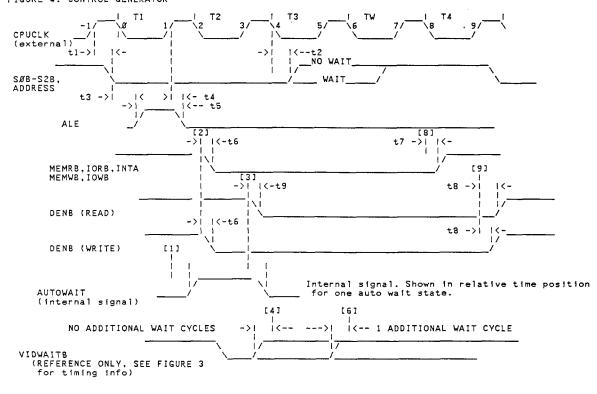
 - logic "1" a 4.0 mA load
 - except all clocks

- - 4.0
- 3.2.6 INPUT CAPACITANCE (0.0 < Vin < 5.0)
 - All inputs
- 3.2.7 OUTPUT CAPACITANCE All loads
 - 50 рf


TIMING DIAGRAMS

I Asynchronous input

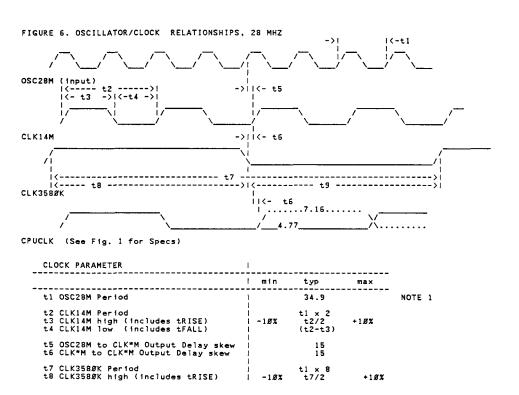

1 40 ns max


tl RSTIN Setup to CPUCLK low

t2 RESET Delay from CPUCLK low

FIGURE 3. READY

FIGURE 4. CONTROL GENERATOR



	ROL GEN							
						- 1	min	 ·
 t1	STATUS	Active	Delay	from	CLK h	1 1		 ns

tl STATUS Active Delay from CLK hi	1Ø	6.0	ns	tCHSV 8Ø88
t2 STATUS Inactive Delay from CLK low!	1.0	7.Ø	ns	tCLSH 8Ø88
t3 ALE True Delay from Status Active 1		2Ø	ns	tSVLH 8288

t4 ALE False Delay from CLK hi i 28 ns t5 ALE Pulse Width i 55 ns t6 STROBE True Delay from CLK low i 30 ns t7 STROBE False Delay from CLK low i 30 ns t8 STROBE False Delay from CLK hi i 30 ns t9 STROBE True Delay from Clk hi i 30 ns
FIGURE SA. ARBITTER/REQUEST ### Clocks min (>
CPUCLK SIEII <-
HOLDB (input) -> t2 (> t3 (-
RQ/GTB (REQUEST to CPU) / RQ/GTB REQUEST and ACKNOWLEDGE can overlap and be seen as one pulse by t4 -> circuit.
RQ/GTB (ACKNOWLEDGE from CPU)
HLDA
FIGURE 5B. ARBITTER/RELEASE
CPUCLK (external) ->
HOLDB
RQ/GTB (RELEASE to CPU) (output)
HL DA
ABRITTER PARAMETER
I min max
tl HOLDB (True) setup to CPUCLK low J 20 ns t2 CPUCLK low to RQ/GTB active (REQ/REL pulse) 1 50 ns tGVCH 8088

	low to RQ/GTB inactive (REQ/REL puls (True) setup to CPUCLK hi (ACK puls		2.0	5.0	ns ns	tCHGX 8088
t5 RQ/GTB	(False) hold from CPUCLK low (ACK pins to HLDA Delay			5Ø 3Ø	ns	tCLGH 8Ø88
	False) Setup to CPUCLK low	i	2Ø	3.0	ns ns	

t9 CLK358ØK low (includes tFALL) tR CLK*M tF CLK*M	!	(t7-t8)	10 ns 10 ns
NOTE 1 Use only one edge because the can not be specified. NOTE 2 Phase Relationship is importan the outputs it generates.		-	
FIGURE 7. OSCILLATOR/CLOCK RELATIONSHIPS	;, 8MHZ	/ ⁻ \	(t1> /
OSC16M	`	´ ` <u> </u>	· · · · · · · · · · · · · · · · · · ·
(- t2 -> (-t3> (-t4 ->)	_,/		
CLK8M			
/	/ ->! ->!		
CLOCK PARAMETER	ı		
	i min	-	ma×
tl OSC16M Period	!	62.5	·
t2 CLKBM Period t3 CLKBM High (includes tRISE) t4 CLKBM Low (includes tFALL)	-1øx	t1 × 2 t2/2 t2-t3	+18X

t5 CLK4M Period t6 CLK4M High (includes tRISE) t7 CLK4M Low (includes tFALL)

+10%

t1 x 4 1 -10% t5/2 t5-t6

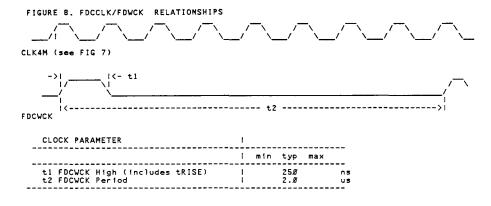


FIGURE 9. CLK4M/FDDMAREQ RELATIONSHIPS

CLK4M

->| | | - t1

->| | | ---- t3

CLOCK PARAMETER	1				
	1	min	typ	max	
t1 FDCDRQ Setup to CLK4M t2 DFDCDRQ Delay TRUE t3 FDCDRQ False to DFDCDRQ False Delay		2Ø .75 us	1.0 us	ns 1.1 us 3Ø ns	Asynchronous

.